Properties

Label 2-471-1.1-c5-0-38
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.00358·2-s − 9·3-s − 31.9·4-s − 98.0·5-s − 0.0322·6-s − 183.·7-s − 0.229·8-s + 81·9-s − 0.351·10-s − 236.·11-s + 287.·12-s + 433.·13-s − 0.657·14-s + 882.·15-s + 1.02e3·16-s + 3.03·17-s + 0.290·18-s + 1.56e3·19-s + 3.13e3·20-s + 1.64e3·21-s − 0.848·22-s − 2.37e3·23-s + 2.06·24-s + 6.48e3·25-s + 1.55·26-s − 729·27-s + 5.86e3·28-s + ⋯
L(s)  = 1  + 0.000634·2-s − 0.577·3-s − 0.999·4-s − 1.75·5-s − 0.000366·6-s − 1.41·7-s − 0.00126·8-s + 0.333·9-s − 0.00111·10-s − 0.589·11-s + 0.577·12-s + 0.711·13-s − 0.000896·14-s + 1.01·15-s + 0.999·16-s + 0.00254·17-s + 0.000211·18-s + 0.994·19-s + 1.75·20-s + 0.816·21-s − 0.000373·22-s − 0.934·23-s + 0.000732·24-s + 2.07·25-s + 0.000450·26-s − 0.192·27-s + 1.41·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 - 0.00358T + 32T^{2} \)
5 \( 1 + 98.0T + 3.12e3T^{2} \)
7 \( 1 + 183.T + 1.68e4T^{2} \)
11 \( 1 + 236.T + 1.61e5T^{2} \)
13 \( 1 - 433.T + 3.71e5T^{2} \)
17 \( 1 - 3.03T + 1.41e6T^{2} \)
19 \( 1 - 1.56e3T + 2.47e6T^{2} \)
23 \( 1 + 2.37e3T + 6.43e6T^{2} \)
29 \( 1 + 463.T + 2.05e7T^{2} \)
31 \( 1 - 3.10e3T + 2.86e7T^{2} \)
37 \( 1 + 4.46e3T + 6.93e7T^{2} \)
41 \( 1 + 7.26e3T + 1.15e8T^{2} \)
43 \( 1 + 1.05e4T + 1.47e8T^{2} \)
47 \( 1 - 1.38e4T + 2.29e8T^{2} \)
53 \( 1 - 8.81e3T + 4.18e8T^{2} \)
59 \( 1 - 1.04e4T + 7.14e8T^{2} \)
61 \( 1 - 8.73e3T + 8.44e8T^{2} \)
67 \( 1 + 2.89e4T + 1.35e9T^{2} \)
71 \( 1 + 4.96e4T + 1.80e9T^{2} \)
73 \( 1 - 4.35e4T + 2.07e9T^{2} \)
79 \( 1 - 3.00e4T + 3.07e9T^{2} \)
83 \( 1 - 5.23e4T + 3.93e9T^{2} \)
89 \( 1 + 3.72e3T + 5.58e9T^{2} \)
97 \( 1 - 3.40e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.864951465394038571624025896198, −8.800927901612274467855267201856, −7.975908675781723614130738381782, −7.09751058669942217187218039786, −5.96458066423896051728994620947, −4.85883659126343014299454369320, −3.82193218627828536199470794687, −3.27110171191040395715574080142, −0.73835816920307543382926944626, 0, 0.73835816920307543382926944626, 3.27110171191040395715574080142, 3.82193218627828536199470794687, 4.85883659126343014299454369320, 5.96458066423896051728994620947, 7.09751058669942217187218039786, 7.975908675781723614130738381782, 8.800927901612274467855267201856, 9.864951465394038571624025896198

Graph of the $Z$-function along the critical line