Properties

Label 2-471-1.1-c3-0-15
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $27.7898$
Root an. cond. $5.27161$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.22·2-s − 3·3-s − 6.49·4-s − 2.10·5-s + 3.67·6-s + 35.0·7-s + 17.7·8-s + 9·9-s + 2.57·10-s − 11.3·11-s + 19.4·12-s − 54.5·13-s − 42.9·14-s + 6.30·15-s + 30.1·16-s − 9.39·17-s − 11.0·18-s − 15.5·19-s + 13.6·20-s − 105.·21-s + 13.9·22-s + 183.·23-s − 53.3·24-s − 120.·25-s + 66.8·26-s − 27·27-s − 227.·28-s + ⋯
L(s)  = 1  − 0.433·2-s − 0.577·3-s − 0.812·4-s − 0.187·5-s + 0.250·6-s + 1.89·7-s + 0.785·8-s + 0.333·9-s + 0.0814·10-s − 0.312·11-s + 0.468·12-s − 1.16·13-s − 0.819·14-s + 0.108·15-s + 0.471·16-s − 0.134·17-s − 0.144·18-s − 0.187·19-s + 0.152·20-s − 1.09·21-s + 0.135·22-s + 1.66·23-s − 0.453·24-s − 0.964·25-s + 0.504·26-s − 0.192·27-s − 1.53·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(27.7898\)
Root analytic conductor: \(5.27161\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.038432544\)
\(L(\frac12)\) \(\approx\) \(1.038432544\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
157 \( 1 + 157T \)
good2 \( 1 + 1.22T + 8T^{2} \)
5 \( 1 + 2.10T + 125T^{2} \)
7 \( 1 - 35.0T + 343T^{2} \)
11 \( 1 + 11.3T + 1.33e3T^{2} \)
13 \( 1 + 54.5T + 2.19e3T^{2} \)
17 \( 1 + 9.39T + 4.91e3T^{2} \)
19 \( 1 + 15.5T + 6.85e3T^{2} \)
23 \( 1 - 183.T + 1.21e4T^{2} \)
29 \( 1 + 139.T + 2.43e4T^{2} \)
31 \( 1 + 236.T + 2.97e4T^{2} \)
37 \( 1 - 156.T + 5.06e4T^{2} \)
41 \( 1 - 182.T + 6.89e4T^{2} \)
43 \( 1 - 423.T + 7.95e4T^{2} \)
47 \( 1 - 439.T + 1.03e5T^{2} \)
53 \( 1 + 497.T + 1.48e5T^{2} \)
59 \( 1 - 216.T + 2.05e5T^{2} \)
61 \( 1 + 325.T + 2.26e5T^{2} \)
67 \( 1 - 505.T + 3.00e5T^{2} \)
71 \( 1 - 993.T + 3.57e5T^{2} \)
73 \( 1 - 370.T + 3.89e5T^{2} \)
79 \( 1 + 810.T + 4.93e5T^{2} \)
83 \( 1 - 654.T + 5.71e5T^{2} \)
89 \( 1 - 1.07e3T + 7.04e5T^{2} \)
97 \( 1 + 844.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92334922925860256926247771240, −9.611579462325000646901959013657, −8.866122213568904118018444219490, −7.70636680183074571974347030642, −7.44449165727997523598889921347, −5.53635121380014340155480682142, −4.92459036433605282495645162487, −4.12381918264327531471975458150, −2.04474083632926885350660175701, −0.72607204872733115280191801975, 0.72607204872733115280191801975, 2.04474083632926885350660175701, 4.12381918264327531471975458150, 4.92459036433605282495645162487, 5.53635121380014340155480682142, 7.44449165727997523598889921347, 7.70636680183074571974347030642, 8.866122213568904118018444219490, 9.611579462325000646901959013657, 10.92334922925860256926247771240

Graph of the $Z$-function along the critical line