Properties

Label 4-4704e2-1.1-c1e2-0-6
Degree $4$
Conductor $22127616$
Sign $1$
Analytic cond. $1410.87$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s − 8·19-s − 2·25-s − 4·27-s + 4·29-s − 12·37-s − 16·47-s + 12·53-s + 16·57-s − 24·59-s + 4·75-s + 5·81-s + 8·83-s − 8·87-s − 32·103-s + 20·109-s + 24·111-s + 36·113-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 32·141-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s − 1.83·19-s − 2/5·25-s − 0.769·27-s + 0.742·29-s − 1.97·37-s − 2.33·47-s + 1.64·53-s + 2.11·57-s − 3.12·59-s + 0.461·75-s + 5/9·81-s + 0.878·83-s − 0.857·87-s − 3.15·103-s + 1.91·109-s + 2.27·111-s + 3.38·113-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.69·141-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22127616 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22127616 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(22127616\)    =    \(2^{10} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1410.87\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 22127616,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 134 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 114 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 170 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.045317270904407179168127782671, −7.76933996509458185281986748980, −7.36004113950989869142129919925, −6.81189191556648109007293423016, −6.56408406591183218778267573967, −6.47078291774047370127331727952, −5.88966250960073648159509475387, −5.66977564535409528524101846806, −5.05800274523150911462167768773, −4.92072100236572330145899049945, −4.32074649648640119590403185364, −4.27323572528866642813948923203, −3.41255164551122973296203610149, −3.38355135209059472188426201663, −2.55086394630257134694884034574, −2.04320818966759348032664634680, −1.63211381272935732782874501643, −1.07444200024290472536339495364, 0, 0, 1.07444200024290472536339495364, 1.63211381272935732782874501643, 2.04320818966759348032664634680, 2.55086394630257134694884034574, 3.38355135209059472188426201663, 3.41255164551122973296203610149, 4.27323572528866642813948923203, 4.32074649648640119590403185364, 4.92072100236572330145899049945, 5.05800274523150911462167768773, 5.66977564535409528524101846806, 5.88966250960073648159509475387, 6.47078291774047370127331727952, 6.56408406591183218778267573967, 6.81189191556648109007293423016, 7.36004113950989869142129919925, 7.76933996509458185281986748980, 8.045317270904407179168127782671

Graph of the $Z$-function along the critical line