Properties

Label 8-4650e4-1.1-c1e4-0-4
Degree $8$
Conductor $4.675\times 10^{14}$
Sign $1$
Analytic cond. $1.90072\times 10^{6}$
Root an. cond. $6.09347$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·9-s + 14·11-s + 3·16-s + 14·19-s + 12·29-s − 4·31-s + 4·36-s − 20·41-s − 28·44-s + 11·49-s + 12·59-s − 4·64-s + 2·71-s − 28·76-s + 30·79-s + 3·81-s − 6·89-s − 28·99-s − 2·101-s + 4·109-s − 24·116-s + 95·121-s + 8·124-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 4-s − 2/3·9-s + 4.22·11-s + 3/4·16-s + 3.21·19-s + 2.22·29-s − 0.718·31-s + 2/3·36-s − 3.12·41-s − 4.22·44-s + 11/7·49-s + 1.56·59-s − 1/2·64-s + 0.237·71-s − 3.21·76-s + 3.37·79-s + 1/3·81-s − 0.635·89-s − 2.81·99-s − 0.199·101-s + 0.383·109-s − 2.22·116-s + 8.63·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(1.90072\times 10^{6}\)
Root analytic conductor: \(6.09347\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 31^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(11.30538589\)
\(L(\frac12)\) \(\approx\) \(11.30538589\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
31$C_1$ \( ( 1 + T )^{4} \)
good7$D_4\times C_2$ \( 1 - 11 T^{2} + 120 T^{4} - 11 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 - 7 T + 26 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
19$D_{4}$ \( ( 1 - 7 T + 42 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 75 T^{2} + 2456 T^{4} - 75 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 6 T + 34 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 32 T^{2} - 306 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 10 T + 74 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 131 T^{2} + 7584 T^{4} - 131 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 120 T^{2} + 7886 T^{4} - 120 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 191 T^{2} + 14664 T^{4} - 191 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 6 T + 94 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 152 T^{2} + 11454 T^{4} - 152 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - T + 134 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 143 T^{2} + 15696 T^{4} - 143 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 15 T + 206 T^{2} - 15 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 3 T + 172 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 190 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.76850325262519766482429540379, −5.69066009269952377787470003935, −5.50333201654178268739340122615, −5.22119626429661962061792738224, −5.06264363623654079150035824049, −4.95636753391204270425545821957, −4.75532876547109067257743985479, −4.32949750044530373399192064255, −4.28061554501289653605996187645, −4.06590189310268286276452468011, −3.84865571826920472773123663969, −3.63321904503824463639674719434, −3.48145439728809235187050913172, −3.44918238102332009410662083718, −2.94818821688529834835537399911, −2.88776746376828554023179361215, −2.86188752524180018574005077648, −2.20687777356438528072049199590, −1.80860740376077973947458704256, −1.65074247318675913164889480236, −1.65056518463477491577099012239, −1.12829709129633719385920323869, −0.836845891708379972901534893699, −0.66313467354204120915462330711, −0.63031658458938657219158967106, 0.63031658458938657219158967106, 0.66313467354204120915462330711, 0.836845891708379972901534893699, 1.12829709129633719385920323869, 1.65056518463477491577099012239, 1.65074247318675913164889480236, 1.80860740376077973947458704256, 2.20687777356438528072049199590, 2.86188752524180018574005077648, 2.88776746376828554023179361215, 2.94818821688529834835537399911, 3.44918238102332009410662083718, 3.48145439728809235187050913172, 3.63321904503824463639674719434, 3.84865571826920472773123663969, 4.06590189310268286276452468011, 4.28061554501289653605996187645, 4.32949750044530373399192064255, 4.75532876547109067257743985479, 4.95636753391204270425545821957, 5.06264363623654079150035824049, 5.22119626429661962061792738224, 5.50333201654178268739340122615, 5.69066009269952377787470003935, 5.76850325262519766482429540379

Graph of the $Z$-function along the critical line