Properties

Label 2-464-1.1-c3-0-10
Degree $2$
Conductor $464$
Sign $1$
Analytic cond. $27.3768$
Root an. cond. $5.23229$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.92·3-s + 14.3·5-s − 16.8·7-s − 18.4·9-s − 16.5·11-s + 55.3·13-s − 41.9·15-s + 6.28·17-s + 119.·19-s + 49.3·21-s − 22.5·23-s + 80.3·25-s + 132.·27-s − 29·29-s − 228.·31-s + 48.4·33-s − 241.·35-s + 257.·37-s − 162.·39-s + 382.·41-s + 170.·43-s − 264.·45-s + 172.·47-s − 58.0·49-s − 18.3·51-s − 69.2·53-s − 237.·55-s + ⋯
L(s)  = 1  − 0.563·3-s + 1.28·5-s − 0.911·7-s − 0.682·9-s − 0.453·11-s + 1.18·13-s − 0.721·15-s + 0.0896·17-s + 1.43·19-s + 0.513·21-s − 0.204·23-s + 0.643·25-s + 0.947·27-s − 0.185·29-s − 1.32·31-s + 0.255·33-s − 1.16·35-s + 1.14·37-s − 0.665·39-s + 1.45·41-s + 0.603·43-s − 0.875·45-s + 0.536·47-s − 0.169·49-s − 0.0504·51-s − 0.179·53-s − 0.581·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(464\)    =    \(2^{4} \cdot 29\)
Sign: $1$
Analytic conductor: \(27.3768\)
Root analytic conductor: \(5.23229\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 464,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.708029526\)
\(L(\frac12)\) \(\approx\) \(1.708029526\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 + 29T \)
good3 \( 1 + 2.92T + 27T^{2} \)
5 \( 1 - 14.3T + 125T^{2} \)
7 \( 1 + 16.8T + 343T^{2} \)
11 \( 1 + 16.5T + 1.33e3T^{2} \)
13 \( 1 - 55.3T + 2.19e3T^{2} \)
17 \( 1 - 6.28T + 4.91e3T^{2} \)
19 \( 1 - 119.T + 6.85e3T^{2} \)
23 \( 1 + 22.5T + 1.21e4T^{2} \)
31 \( 1 + 228.T + 2.97e4T^{2} \)
37 \( 1 - 257.T + 5.06e4T^{2} \)
41 \( 1 - 382.T + 6.89e4T^{2} \)
43 \( 1 - 170.T + 7.95e4T^{2} \)
47 \( 1 - 172.T + 1.03e5T^{2} \)
53 \( 1 + 69.2T + 1.48e5T^{2} \)
59 \( 1 - 43.6T + 2.05e5T^{2} \)
61 \( 1 - 684.T + 2.26e5T^{2} \)
67 \( 1 - 528.T + 3.00e5T^{2} \)
71 \( 1 - 488.T + 3.57e5T^{2} \)
73 \( 1 - 80.3T + 3.89e5T^{2} \)
79 \( 1 - 741.T + 4.93e5T^{2} \)
83 \( 1 - 1.36e3T + 5.71e5T^{2} \)
89 \( 1 - 957.T + 7.04e5T^{2} \)
97 \( 1 + 1.11e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68768755573994308039951728019, −9.631055540499419699434242906142, −9.177606371934210431711176816796, −7.88084703595962375522281441677, −6.58516092697133747649306096488, −5.83998349493891296861018088557, −5.35310759435832215862349282416, −3.58985184387095464660757613159, −2.44077180323286521361124900261, −0.854832125783655252599219029392, 0.854832125783655252599219029392, 2.44077180323286521361124900261, 3.58985184387095464660757613159, 5.35310759435832215862349282416, 5.83998349493891296861018088557, 6.58516092697133747649306096488, 7.88084703595962375522281441677, 9.177606371934210431711176816796, 9.631055540499419699434242906142, 10.68768755573994308039951728019

Graph of the $Z$-function along the critical line