Properties

Label 2-462-77.53-c1-0-11
Degree $2$
Conductor $462$
Sign $0.0696 + 0.997i$
Analytic cond. $3.68908$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.978 + 0.207i)2-s + (0.104 + 0.994i)3-s + (0.913 − 0.406i)4-s + (1.06 − 1.18i)5-s + (−0.309 − 0.951i)6-s + (−2.48 − 0.912i)7-s + (−0.809 + 0.587i)8-s + (−0.978 + 0.207i)9-s + (−0.794 + 1.37i)10-s + (−1.41 − 3.00i)11-s + (0.5 + 0.866i)12-s + (1.65 − 5.09i)13-s + (2.61 + 0.376i)14-s + (1.28 + 0.933i)15-s + (0.669 − 0.743i)16-s + (−7.14 − 1.51i)17-s + ⋯
L(s)  = 1  + (−0.691 + 0.147i)2-s + (0.0603 + 0.574i)3-s + (0.456 − 0.203i)4-s + (0.475 − 0.528i)5-s + (−0.126 − 0.388i)6-s + (−0.938 − 0.345i)7-s + (−0.286 + 0.207i)8-s + (−0.326 + 0.0693i)9-s + (−0.251 + 0.435i)10-s + (−0.425 − 0.904i)11-s + (0.144 + 0.250i)12-s + (0.459 − 1.41i)13-s + (0.699 + 0.100i)14-s + (0.331 + 0.241i)15-s + (0.167 − 0.185i)16-s + (−1.73 − 0.368i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0696 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0696 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(462\)    =    \(2 \cdot 3 \cdot 7 \cdot 11\)
Sign: $0.0696 + 0.997i$
Analytic conductor: \(3.68908\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{462} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 462,\ (\ :1/2),\ 0.0696 + 0.997i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.506860 - 0.472708i\)
\(L(\frac12)\) \(\approx\) \(0.506860 - 0.472708i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.978 - 0.207i)T \)
3 \( 1 + (-0.104 - 0.994i)T \)
7 \( 1 + (2.48 + 0.912i)T \)
11 \( 1 + (1.41 + 3.00i)T \)
good5 \( 1 + (-1.06 + 1.18i)T + (-0.522 - 4.97i)T^{2} \)
13 \( 1 + (-1.65 + 5.09i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (7.14 + 1.51i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (-0.841 - 0.374i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (-0.477 - 0.826i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (4.30 + 3.12i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (-1.69 - 1.88i)T + (-3.24 + 30.8i)T^{2} \)
37 \( 1 + (-1.14 + 10.8i)T + (-36.1 - 7.69i)T^{2} \)
41 \( 1 + (-2.76 + 2.01i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 - 11.0T + 43T^{2} \)
47 \( 1 + (2.70 + 1.20i)T + (31.4 + 34.9i)T^{2} \)
53 \( 1 + (7.15 + 7.95i)T + (-5.54 + 52.7i)T^{2} \)
59 \( 1 + (-3.93 + 1.75i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + (-6.76 + 7.51i)T + (-6.37 - 60.6i)T^{2} \)
67 \( 1 + (6.94 - 12.0i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-2.23 - 6.89i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (1.59 - 0.710i)T + (48.8 - 54.2i)T^{2} \)
79 \( 1 + (10.2 - 2.18i)T + (72.1 - 32.1i)T^{2} \)
83 \( 1 + (-1.40 - 4.31i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + (-8.07 - 13.9i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-2.23 + 6.88i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.77872159927082806220931057193, −9.784653798332840358788821545766, −9.131356435571907971076401587465, −8.375869069244735399193054508806, −7.26739275863467415632521519568, −6.04106976659848540529889821940, −5.38074519941622170375119113965, −3.81440623423029526165403796155, −2.61848526521243310947204272594, −0.50225039606529266715861946382, 1.90234512535588401337379672371, 2.77277190512722107479119326401, 4.39328227382920555200783205556, 6.22667110384827813339532114111, 6.59307586272633836813994618111, 7.51286732058050828218856909094, 8.827677537892191503077624826375, 9.344349154135891965786983728011, 10.30328225749213917266536410544, 11.16951035561618201740385000729

Graph of the $Z$-function along the critical line