Properties

Label 2-462-77.53-c1-0-4
Degree $2$
Conductor $462$
Sign $-0.113 - 0.993i$
Analytic cond. $3.68908$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.978 + 0.207i)2-s + (0.104 + 0.994i)3-s + (0.913 − 0.406i)4-s + (0.279 − 0.310i)5-s + (−0.309 − 0.951i)6-s + (−2.03 − 1.69i)7-s + (−0.809 + 0.587i)8-s + (−0.978 + 0.207i)9-s + (−0.208 + 0.361i)10-s + (2.44 + 2.24i)11-s + (0.5 + 0.866i)12-s + (−1.95 + 6.00i)13-s + (2.33 + 1.23i)14-s + (0.338 + 0.245i)15-s + (0.669 − 0.743i)16-s + (5.99 + 1.27i)17-s + ⋯
L(s)  = 1  + (−0.691 + 0.147i)2-s + (0.0603 + 0.574i)3-s + (0.456 − 0.203i)4-s + (0.125 − 0.138i)5-s + (−0.126 − 0.388i)6-s + (−0.767 − 0.641i)7-s + (−0.286 + 0.207i)8-s + (−0.326 + 0.0693i)9-s + (−0.0660 + 0.114i)10-s + (0.736 + 0.676i)11-s + (0.144 + 0.250i)12-s + (−0.541 + 1.66i)13-s + (0.625 + 0.330i)14-s + (0.0872 + 0.0634i)15-s + (0.167 − 0.185i)16-s + (1.45 + 0.308i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.113 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.113 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(462\)    =    \(2 \cdot 3 \cdot 7 \cdot 11\)
Sign: $-0.113 - 0.993i$
Analytic conductor: \(3.68908\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{462} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 462,\ (\ :1/2),\ -0.113 - 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.583570 + 0.654242i\)
\(L(\frac12)\) \(\approx\) \(0.583570 + 0.654242i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.978 - 0.207i)T \)
3 \( 1 + (-0.104 - 0.994i)T \)
7 \( 1 + (2.03 + 1.69i)T \)
11 \( 1 + (-2.44 - 2.24i)T \)
good5 \( 1 + (-0.279 + 0.310i)T + (-0.522 - 4.97i)T^{2} \)
13 \( 1 + (1.95 - 6.00i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (-5.99 - 1.27i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (3.10 + 1.38i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (-4.39 - 7.61i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (3.21 + 2.33i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (1.39 + 1.54i)T + (-3.24 + 30.8i)T^{2} \)
37 \( 1 + (0.0897 - 0.854i)T + (-36.1 - 7.69i)T^{2} \)
41 \( 1 + (3.13 - 2.27i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 - 2.07T + 43T^{2} \)
47 \( 1 + (0.168 + 0.0748i)T + (31.4 + 34.9i)T^{2} \)
53 \( 1 + (-4.28 - 4.75i)T + (-5.54 + 52.7i)T^{2} \)
59 \( 1 + (-4.08 + 1.82i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + (4.56 - 5.07i)T + (-6.37 - 60.6i)T^{2} \)
67 \( 1 + (-5.77 + 10.0i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (0.960 + 2.95i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (3.63 - 1.61i)T + (48.8 - 54.2i)T^{2} \)
79 \( 1 + (13.1 - 2.78i)T + (72.1 - 32.1i)T^{2} \)
83 \( 1 + (3.63 + 11.1i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + (-4.82 - 8.34i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-2.35 + 7.26i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.18181318746146822686487723727, −10.04386992582725116941397904764, −9.501836135703507443333986698834, −8.994719590678502200803183314171, −7.48889247039049648994424733689, −6.92812025162701840311763424177, −5.76940692486940090355131221968, −4.43627824554930561012423540894, −3.39888658961389995784793217326, −1.62620854501590096215056414461, 0.69774208166189731822038223223, 2.54479776516078172802576334607, 3.38453426686751109362956086881, 5.43581588571268933536766256001, 6.26754902502443941116308625793, 7.18841798416602777478942968983, 8.269291095374753729193156802957, 8.861628702536316416833384167768, 10.00239852663144811874749180667, 10.57723850784674948984312015941

Graph of the $Z$-function along the critical line