Properties

Label 2-462-77.25-c1-0-1
Degree $2$
Conductor $462$
Sign $0.256 - 0.966i$
Analytic cond. $3.68908$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.913 − 0.406i)2-s + (−0.978 − 0.207i)3-s + (0.669 + 0.743i)4-s + (−0.168 + 1.60i)5-s + (0.809 + 0.587i)6-s + (−1.86 − 1.87i)7-s + (−0.309 − 0.951i)8-s + (0.913 + 0.406i)9-s + (0.806 − 1.39i)10-s + (3.31 + 0.0483i)11-s + (−0.499 − 0.866i)12-s + (0.214 − 0.156i)13-s + (0.945 + 2.47i)14-s + (0.498 − 1.53i)15-s + (−0.104 + 0.994i)16-s + (−4.96 + 2.21i)17-s + ⋯
L(s)  = 1  + (−0.645 − 0.287i)2-s + (−0.564 − 0.120i)3-s + (0.334 + 0.371i)4-s + (−0.0754 + 0.717i)5-s + (0.330 + 0.239i)6-s + (−0.706 − 0.707i)7-s + (−0.109 − 0.336i)8-s + (0.304 + 0.135i)9-s + (0.255 − 0.441i)10-s + (0.999 + 0.0145i)11-s + (−0.144 − 0.249i)12-s + (0.0595 − 0.0432i)13-s + (0.252 + 0.660i)14-s + (0.128 − 0.396i)15-s + (−0.0261 + 0.248i)16-s + (−1.20 + 0.536i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(462\)    =    \(2 \cdot 3 \cdot 7 \cdot 11\)
Sign: $0.256 - 0.966i$
Analytic conductor: \(3.68908\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{462} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 462,\ (\ :1/2),\ 0.256 - 0.966i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.471787 + 0.362724i\)
\(L(\frac12)\) \(\approx\) \(0.471787 + 0.362724i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.913 + 0.406i)T \)
3 \( 1 + (0.978 + 0.207i)T \)
7 \( 1 + (1.86 + 1.87i)T \)
11 \( 1 + (-3.31 - 0.0483i)T \)
good5 \( 1 + (0.168 - 1.60i)T + (-4.89 - 1.03i)T^{2} \)
13 \( 1 + (-0.214 + 0.156i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (4.96 - 2.21i)T + (11.3 - 12.6i)T^{2} \)
19 \( 1 + (2.85 - 3.17i)T + (-1.98 - 18.8i)T^{2} \)
23 \( 1 + (-4.45 - 7.71i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (3.02 - 9.30i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (0.442 + 4.21i)T + (-30.3 + 6.44i)T^{2} \)
37 \( 1 + (0.958 - 0.203i)T + (33.8 - 15.0i)T^{2} \)
41 \( 1 + (-2.45 - 7.56i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 + 5.30T + 43T^{2} \)
47 \( 1 + (-5.38 + 5.97i)T + (-4.91 - 46.7i)T^{2} \)
53 \( 1 + (-0.835 - 7.95i)T + (-51.8 + 11.0i)T^{2} \)
59 \( 1 + (-8.38 - 9.31i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (0.758 - 7.21i)T + (-59.6 - 12.6i)T^{2} \)
67 \( 1 + (-3.08 + 5.34i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (6.52 + 4.73i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (5.88 + 6.53i)T + (-7.63 + 72.6i)T^{2} \)
79 \( 1 + (-10.1 - 4.49i)T + (52.8 + 58.7i)T^{2} \)
83 \( 1 + (7.60 + 5.52i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + (7.87 + 13.6i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (14.3 - 10.4i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99218578532372283737897623774, −10.55802618685982854608132749638, −9.541904440713702484659513306805, −8.728762743770633389506869803787, −7.27893826139973849166387800649, −6.86219142413443752422967530043, −5.92030349601172974437247229280, −4.19311535820921444166908230574, −3.22854822450850210417011981053, −1.47749204319939045409481506553, 0.50881052082589355232547555438, 2.39578298231796145271049034805, 4.23600722241166506193983841610, 5.24077680885648403073220865071, 6.47798979716960072906161996145, 6.84654940146639287439767504562, 8.559459239292622044979474043139, 8.950823479933301051165490950136, 9.753830146487740040697324636013, 10.89349498483553770029079887542

Graph of the $Z$-function along the critical line