Properties

Label 2-462-77.25-c1-0-0
Degree $2$
Conductor $462$
Sign $-0.620 - 0.784i$
Analytic cond. $3.68908$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.913 − 0.406i)2-s + (−0.978 − 0.207i)3-s + (0.669 + 0.743i)4-s + (−0.435 + 4.14i)5-s + (0.809 + 0.587i)6-s + (2.64 − 0.0306i)7-s + (−0.309 − 0.951i)8-s + (0.913 + 0.406i)9-s + (2.08 − 3.60i)10-s + (−3.29 + 0.384i)11-s + (−0.499 − 0.866i)12-s + (−1.76 + 1.28i)13-s + (−2.42 − 1.04i)14-s + (1.28 − 3.95i)15-s + (−0.104 + 0.994i)16-s + (−0.794 + 0.353i)17-s + ⋯
L(s)  = 1  + (−0.645 − 0.287i)2-s + (−0.564 − 0.120i)3-s + (0.334 + 0.371i)4-s + (−0.194 + 1.85i)5-s + (0.330 + 0.239i)6-s + (0.999 − 0.0115i)7-s + (−0.109 − 0.336i)8-s + (0.304 + 0.135i)9-s + (0.658 − 1.14i)10-s + (−0.993 + 0.115i)11-s + (−0.144 − 0.249i)12-s + (−0.489 + 0.355i)13-s + (−0.649 − 0.280i)14-s + (0.332 − 1.02i)15-s + (−0.0261 + 0.248i)16-s + (−0.192 + 0.0858i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.620 - 0.784i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.620 - 0.784i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(462\)    =    \(2 \cdot 3 \cdot 7 \cdot 11\)
Sign: $-0.620 - 0.784i$
Analytic conductor: \(3.68908\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{462} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 462,\ (\ :1/2),\ -0.620 - 0.784i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.246715 + 0.509460i\)
\(L(\frac12)\) \(\approx\) \(0.246715 + 0.509460i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.913 + 0.406i)T \)
3 \( 1 + (0.978 + 0.207i)T \)
7 \( 1 + (-2.64 + 0.0306i)T \)
11 \( 1 + (3.29 - 0.384i)T \)
good5 \( 1 + (0.435 - 4.14i)T + (-4.89 - 1.03i)T^{2} \)
13 \( 1 + (1.76 - 1.28i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (0.794 - 0.353i)T + (11.3 - 12.6i)T^{2} \)
19 \( 1 + (-0.776 + 0.862i)T + (-1.98 - 18.8i)T^{2} \)
23 \( 1 + (1.42 + 2.47i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (1.53 - 4.71i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (-0.186 - 1.77i)T + (-30.3 + 6.44i)T^{2} \)
37 \( 1 + (9.61 - 2.04i)T + (33.8 - 15.0i)T^{2} \)
41 \( 1 + (-2.10 - 6.48i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 - 7.87T + 43T^{2} \)
47 \( 1 + (5.05 - 5.61i)T + (-4.91 - 46.7i)T^{2} \)
53 \( 1 + (0.574 + 5.46i)T + (-51.8 + 11.0i)T^{2} \)
59 \( 1 + (-5.44 - 6.05i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (0.0766 - 0.728i)T + (-59.6 - 12.6i)T^{2} \)
67 \( 1 + (3.89 - 6.73i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (4.47 + 3.25i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-1.15 - 1.28i)T + (-7.63 + 72.6i)T^{2} \)
79 \( 1 + (14.5 + 6.47i)T + (52.8 + 58.7i)T^{2} \)
83 \( 1 + (0.738 + 0.536i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + (6.98 + 12.1i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-12.0 + 8.77i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23146596811249186482936788423, −10.52188599108102503812421140083, −10.04631631600061821446917965241, −8.566978700451298340029745156989, −7.47315739359115934908635249793, −7.11179311379666616943999642166, −5.95315036353802658679595621441, −4.61595606667251853011357246815, −3.09108886376083451367680432961, −2.02827411723724501309987913336, 0.44901217289101126098697567957, 1.87126695541154793801563940493, 4.24864346592883391910256372476, 5.25040597384754709358526463182, 5.61756098678271441898760553350, 7.42883923889532476806617737763, 8.059731747040516924219326754840, 8.822003062929850467998324211863, 9.727794027300129810749812166038, 10.67130353212839300855043329333

Graph of the $Z$-function along the critical line