Properties

Label 2-462-77.9-c1-0-12
Degree $2$
Conductor $462$
Sign $0.144 + 0.989i$
Analytic cond. $3.68908$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.669 − 0.743i)2-s + (0.913 + 0.406i)3-s + (−0.104 + 0.994i)4-s + (−1.13 − 0.241i)5-s + (−0.309 − 0.951i)6-s + (−1.18 − 2.36i)7-s + (0.809 − 0.587i)8-s + (0.669 + 0.743i)9-s + (0.579 + 1.00i)10-s + (3.01 + 1.38i)11-s + (−0.5 + 0.866i)12-s + (1.36 − 4.18i)13-s + (−0.961 + 2.46i)14-s + (−0.937 − 0.681i)15-s + (−0.978 − 0.207i)16-s + (0.764 − 0.848i)17-s + ⋯
L(s)  = 1  + (−0.473 − 0.525i)2-s + (0.527 + 0.234i)3-s + (−0.0522 + 0.497i)4-s + (−0.507 − 0.107i)5-s + (−0.126 − 0.388i)6-s + (−0.449 − 0.893i)7-s + (0.286 − 0.207i)8-s + (0.223 + 0.247i)9-s + (0.183 + 0.317i)10-s + (0.908 + 0.417i)11-s + (−0.144 + 0.249i)12-s + (0.377 − 1.16i)13-s + (−0.256 + 0.658i)14-s + (−0.242 − 0.175i)15-s + (−0.244 − 0.0519i)16-s + (0.185 − 0.205i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.144 + 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.144 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(462\)    =    \(2 \cdot 3 \cdot 7 \cdot 11\)
Sign: $0.144 + 0.989i$
Analytic conductor: \(3.68908\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{462} (163, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 462,\ (\ :1/2),\ 0.144 + 0.989i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.863048 - 0.746531i\)
\(L(\frac12)\) \(\approx\) \(0.863048 - 0.746531i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.669 + 0.743i)T \)
3 \( 1 + (-0.913 - 0.406i)T \)
7 \( 1 + (1.18 + 2.36i)T \)
11 \( 1 + (-3.01 - 1.38i)T \)
good5 \( 1 + (1.13 + 0.241i)T + (4.56 + 2.03i)T^{2} \)
13 \( 1 + (-1.36 + 4.18i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (-0.764 + 0.848i)T + (-1.77 - 16.9i)T^{2} \)
19 \( 1 + (0.648 + 6.17i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-0.0167 + 0.0290i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-2.81 - 2.04i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (-7.93 + 1.68i)T + (28.3 - 12.6i)T^{2} \)
37 \( 1 + (-7.00 + 3.11i)T + (24.7 - 27.4i)T^{2} \)
41 \( 1 + (-6.14 + 4.46i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + 8.54T + 43T^{2} \)
47 \( 1 + (0.417 + 3.97i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (12.0 - 2.55i)T + (48.4 - 21.5i)T^{2} \)
59 \( 1 + (1.13 - 10.7i)T + (-57.7 - 12.2i)T^{2} \)
61 \( 1 + (-2.77 - 0.589i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (4.65 + 8.05i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (0.761 + 2.34i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (0.859 - 8.17i)T + (-71.4 - 15.1i)T^{2} \)
79 \( 1 + (-5.10 - 5.66i)T + (-8.25 + 78.5i)T^{2} \)
83 \( 1 + (-2.60 - 8.01i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + (1.06 - 1.83i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (4.23 - 13.0i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72431545152944022715480058622, −9.931982319517998159092889549514, −9.191784486311240454466732851867, −8.194239597855453607602429213267, −7.44664368927650187915622224689, −6.43549375736820026416168202780, −4.64275665901945254823607220073, −3.78887196780663140097037186248, −2.76001089773014150715424932917, −0.851685236060884069587495223360, 1.64138300139343091470772919849, 3.26454549354933187734710166220, 4.41630714156510256047551775001, 6.14442869691869277026824401419, 6.46646505747680670189202538502, 7.86156315615651706875015283297, 8.435326226716595067737078888043, 9.333601068504450684897499987182, 9.972598423545106794880294256981, 11.45806854781996699536592120514

Graph of the $Z$-function along the critical line