Properties

Label 2-462-77.9-c1-0-11
Degree $2$
Conductor $462$
Sign $0.395 - 0.918i$
Analytic cond. $3.68908$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.669 + 0.743i)2-s + (0.913 + 0.406i)3-s + (−0.104 + 0.994i)4-s + (3.97 + 0.845i)5-s + (0.309 + 0.951i)6-s + (−2.27 − 1.34i)7-s + (−0.809 + 0.587i)8-s + (0.669 + 0.743i)9-s + (2.03 + 3.51i)10-s + (0.0572 + 3.31i)11-s + (−0.5 + 0.866i)12-s + (0.914 − 2.81i)13-s + (−0.525 − 2.59i)14-s + (3.28 + 2.38i)15-s + (−0.978 − 0.207i)16-s + (−2.99 + 3.32i)17-s + ⋯
L(s)  = 1  + (0.473 + 0.525i)2-s + (0.527 + 0.234i)3-s + (−0.0522 + 0.497i)4-s + (1.77 + 0.377i)5-s + (0.126 + 0.388i)6-s + (−0.861 − 0.508i)7-s + (−0.286 + 0.207i)8-s + (0.223 + 0.247i)9-s + (0.642 + 1.11i)10-s + (0.0172 + 0.999i)11-s + (−0.144 + 0.249i)12-s + (0.253 − 0.780i)13-s + (−0.140 − 0.693i)14-s + (0.848 + 0.616i)15-s + (−0.244 − 0.0519i)16-s + (−0.725 + 0.805i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.395 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.395 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(462\)    =    \(2 \cdot 3 \cdot 7 \cdot 11\)
Sign: $0.395 - 0.918i$
Analytic conductor: \(3.68908\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{462} (163, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 462,\ (\ :1/2),\ 0.395 - 0.918i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.07722 + 1.36688i\)
\(L(\frac12)\) \(\approx\) \(2.07722 + 1.36688i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.669 - 0.743i)T \)
3 \( 1 + (-0.913 - 0.406i)T \)
7 \( 1 + (2.27 + 1.34i)T \)
11 \( 1 + (-0.0572 - 3.31i)T \)
good5 \( 1 + (-3.97 - 0.845i)T + (4.56 + 2.03i)T^{2} \)
13 \( 1 + (-0.914 + 2.81i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (2.99 - 3.32i)T + (-1.77 - 16.9i)T^{2} \)
19 \( 1 + (0.764 + 7.27i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-1.81 + 3.13i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.324 + 0.235i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (5.98 - 1.27i)T + (28.3 - 12.6i)T^{2} \)
37 \( 1 + (7.90 - 3.52i)T + (24.7 - 27.4i)T^{2} \)
41 \( 1 + (-5.50 + 3.99i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + 1.88T + 43T^{2} \)
47 \( 1 + (-0.0136 - 0.129i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (-0.0210 + 0.00447i)T + (48.4 - 21.5i)T^{2} \)
59 \( 1 + (-0.328 + 3.12i)T + (-57.7 - 12.2i)T^{2} \)
61 \( 1 + (-7.52 - 1.59i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (-2.73 - 4.73i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (4.19 + 12.9i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (0.346 - 3.29i)T + (-71.4 - 15.1i)T^{2} \)
79 \( 1 + (11.1 + 12.3i)T + (-8.25 + 78.5i)T^{2} \)
83 \( 1 + (-2.23 - 6.88i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + (0.223 - 0.386i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-5.58 + 17.1i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82473382134460664577661331726, −10.27023362131820696007357269716, −9.377223236611336929378938858704, −8.721087177465441298889080279912, −7.12504699976157471061740550766, −6.66154891100239000169541582949, −5.62752329797899491084354707130, −4.56718033375182387012068767984, −3.17340176832180999277605494455, −2.14704458148117902085903072658, 1.59517326599854880222977371614, 2.57996267935023421431664749365, 3.73943885356737236408845803294, 5.38227298204039699491160462776, 5.98445954725358454755542292236, 6.84942757663827473319087691294, 8.620879959762585025039219161614, 9.264167280770900715862619147671, 9.807559435554332016599725131792, 10.82080733740295654325897720965

Graph of the $Z$-function along the critical line