Properties

Label 8-462e4-1.1-c1e4-0-7
Degree $8$
Conductor $45558341136$
Sign $1$
Analytic cond. $185.215$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·4-s + 4·5-s + 6·7-s + 2·9-s − 4·12-s + 8·15-s + 3·16-s − 20·17-s − 8·20-s + 12·21-s + 6·27-s − 12·28-s + 24·35-s − 4·36-s − 4·41-s + 8·43-s + 8·45-s − 24·47-s + 6·48-s + 18·49-s − 40·51-s − 4·59-s − 16·60-s + 12·63-s − 4·64-s + 24·67-s + ⋯
L(s)  = 1  + 1.15·3-s − 4-s + 1.78·5-s + 2.26·7-s + 2/3·9-s − 1.15·12-s + 2.06·15-s + 3/4·16-s − 4.85·17-s − 1.78·20-s + 2.61·21-s + 1.15·27-s − 2.26·28-s + 4.05·35-s − 2/3·36-s − 0.624·41-s + 1.21·43-s + 1.19·45-s − 3.50·47-s + 0.866·48-s + 18/7·49-s − 5.60·51-s − 0.520·59-s − 2.06·60-s + 1.51·63-s − 1/2·64-s + 2.93·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(185.215\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.975472173\)
\(L(\frac12)\) \(\approx\) \(3.975472173\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$D_{4}$ \( ( 1 - 2 T + 6 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
17$D_{4}$ \( ( 1 + 10 T + 54 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 80 T^{2} + 2638 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
29$C_4\times C_2$ \( 1 - 44 T^{2} + 886 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 96 T^{2} + 4046 T^{4} - 96 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 + 54 T^{2} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 2 T - 42 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 4 T + 10 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 + 12 T + 110 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 120 T^{2} + 9038 T^{4} - 120 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 2 T + 114 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_4\times C_2$ \( 1 - 76 T^{2} + 3766 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 12 T + 150 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 + 16 T^{2} - 2354 T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 24 T^{2} + 6302 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 10 T + 178 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
89$D_{4}$ \( ( 1 - 8 T + 114 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 340 T^{2} + 47398 T^{4} - 340 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.085715674385827048364887784384, −7.80384748991073404901300146209, −7.75038363231047214312353040547, −7.33520364373190921671750024876, −7.03846655063027790280926094730, −6.52340274352972771407586628821, −6.48434330685317520330089109800, −6.45924584654047377314713764410, −6.15756463831213322052217552619, −5.58969603402749060205599511720, −5.40355571960670569949362452388, −5.06036161139168043228720711218, −4.79691438553130064759370630154, −4.75220280849587052787640839500, −4.42047314677697039834379377798, −4.28314790339871214435564738376, −3.84863184689559725708360602731, −3.53387119496483252411691448233, −3.09039118620624704809392992406, −2.52226619264636754810946663350, −2.26513352989288105160917061919, −2.07172806355274297272936955619, −1.77206805510337242051100493331, −1.64435368882294884647650703222, −0.59837793069055945425910887008, 0.59837793069055945425910887008, 1.64435368882294884647650703222, 1.77206805510337242051100493331, 2.07172806355274297272936955619, 2.26513352989288105160917061919, 2.52226619264636754810946663350, 3.09039118620624704809392992406, 3.53387119496483252411691448233, 3.84863184689559725708360602731, 4.28314790339871214435564738376, 4.42047314677697039834379377798, 4.75220280849587052787640839500, 4.79691438553130064759370630154, 5.06036161139168043228720711218, 5.40355571960670569949362452388, 5.58969603402749060205599511720, 6.15756463831213322052217552619, 6.45924584654047377314713764410, 6.48434330685317520330089109800, 6.52340274352972771407586628821, 7.03846655063027790280926094730, 7.33520364373190921671750024876, 7.75038363231047214312353040547, 7.80384748991073404901300146209, 8.085715674385827048364887784384

Graph of the $Z$-function along the critical line