Properties

Label 8-4608e4-1.1-c1e4-0-28
Degree $8$
Conductor $4.509\times 10^{14}$
Sign $1$
Analytic cond. $1.83298\times 10^{6}$
Root an. cond. $6.06589$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24·23-s − 4·25-s − 40·47-s + 24·49-s + 8·71-s + 40·73-s + 48·97-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 44·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 5.00·23-s − 4/5·25-s − 5.83·47-s + 24/7·49-s + 0.949·71-s + 4.68·73-s + 4.87·97-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.38·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.83298\times 10^{6}\)
Root analytic conductor: \(6.06589\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(8.604513217\)
\(L(\frac12)\) \(\approx\) \(8.604513217\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 12 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 36 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - 64 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 + 102 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 80 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.07354927287348495114561786600, −5.47009948471608903253990173633, −5.37386578189162678006975069305, −5.18869902695822134010980756291, −5.06357688760672510391974621345, −4.96057481412867214042343804655, −4.84353114784319437315436299077, −4.54633321999594124037276764559, −4.48236125230598524635269233080, −3.87671389386037801576592282539, −3.81739057146245058494164130206, −3.69697561829116945798302016457, −3.48622815491865014169050392003, −3.08386269687802162291920747145, −3.05214670725224450086655911930, −2.84663025818247163547277017920, −2.76794760390716487654127671663, −2.12405685590574694231427204884, −2.09108274125028759425641351592, −1.75495457466366195331429611955, −1.72807314767017120440826262292, −1.10001293584377675054322218066, −0.838369058726951553592484173434, −0.68225342563124183632341774407, −0.48992126553420974290398313524, 0.48992126553420974290398313524, 0.68225342563124183632341774407, 0.838369058726951553592484173434, 1.10001293584377675054322218066, 1.72807314767017120440826262292, 1.75495457466366195331429611955, 2.09108274125028759425641351592, 2.12405685590574694231427204884, 2.76794760390716487654127671663, 2.84663025818247163547277017920, 3.05214670725224450086655911930, 3.08386269687802162291920747145, 3.48622815491865014169050392003, 3.69697561829116945798302016457, 3.81739057146245058494164130206, 3.87671389386037801576592282539, 4.48236125230598524635269233080, 4.54633321999594124037276764559, 4.84353114784319437315436299077, 4.96057481412867214042343804655, 5.06357688760672510391974621345, 5.18869902695822134010980756291, 5.37386578189162678006975069305, 5.47009948471608903253990173633, 6.07354927287348495114561786600

Graph of the $Z$-function along the critical line