L(s) = 1 | + 3.07i·3-s + 2.07i·7-s − 6.48·9-s + 5.07·11-s − 3.48i·13-s − 6.48i·17-s + 7.48·19-s − 6.40·21-s + i·23-s − 10.7i·27-s + 1.56·29-s + 0.0791·31-s + 15.6i·33-s + 9.71i·37-s + 10.7·39-s + ⋯ |
L(s) = 1 | + 1.77i·3-s + 0.785i·7-s − 2.16·9-s + 1.53·11-s − 0.965i·13-s − 1.57i·17-s + 1.71·19-s − 1.39·21-s + 0.208i·23-s − 2.06i·27-s + 0.289·29-s + 0.0142·31-s + 2.72i·33-s + 1.59i·37-s + 1.71·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.176958687\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.176958687\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 - iT \) |
good | 3 | \( 1 - 3.07iT - 3T^{2} \) |
| 7 | \( 1 - 2.07iT - 7T^{2} \) |
| 11 | \( 1 - 5.07T + 11T^{2} \) |
| 13 | \( 1 + 3.48iT - 13T^{2} \) |
| 17 | \( 1 + 6.48iT - 17T^{2} \) |
| 19 | \( 1 - 7.48T + 19T^{2} \) |
| 29 | \( 1 - 1.56T + 29T^{2} \) |
| 31 | \( 1 - 0.0791T + 31T^{2} \) |
| 37 | \( 1 - 9.71iT - 37T^{2} \) |
| 41 | \( 1 + 0.480T + 41T^{2} \) |
| 43 | \( 1 - 8iT - 43T^{2} \) |
| 47 | \( 1 + 6.96iT - 47T^{2} \) |
| 53 | \( 1 - 11.7iT - 53T^{2} \) |
| 59 | \( 1 - 11.5T + 59T^{2} \) |
| 61 | \( 1 - 7.88T + 61T^{2} \) |
| 67 | \( 1 - 9.71iT - 67T^{2} \) |
| 71 | \( 1 + 9.67T + 71T^{2} \) |
| 73 | \( 1 + 13.2iT - 73T^{2} \) |
| 79 | \( 1 - 12.3T + 79T^{2} \) |
| 83 | \( 1 + 4.59iT - 83T^{2} \) |
| 89 | \( 1 + 8.31T + 89T^{2} \) |
| 97 | \( 1 + 7.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.935996983105362456161937020306, −8.047941271962651953959156250626, −7.09257529941082758849995709858, −6.10917256979237677979547879655, −5.34681743300551116413436745076, −4.95037052750560516897094422676, −4.05187724026678254465706697962, −3.20765812373988208530851551231, −2.76742338734489608704131622068, −0.996754080179682520150237908565,
0.78827300348189271728511041563, 1.47575122214460229612176742393, 2.21204871927215847940364126987, 3.56210284994336987360116243772, 4.07876165590233436536087369665, 5.43841758223119210162516531326, 6.15913775270643562278263504133, 6.91630488626717906698764013698, 7.07562599537961612120530400612, 7.953417865591742137987763846865