| L(s) = 1 | + 5·9-s + 8·19-s + 6·29-s − 2·31-s − 10·41-s + 10·49-s + 6·71-s − 8·79-s + 16·81-s + 28·89-s + 4·101-s − 4·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 25·169-s + 40·171-s + 173-s + 179-s + 181-s + ⋯ |
| L(s) = 1 | + 5/3·9-s + 1.83·19-s + 1.11·29-s − 0.359·31-s − 1.56·41-s + 10/7·49-s + 0.712·71-s − 0.900·79-s + 16/9·81-s + 2.96·89-s + 0.398·101-s − 0.383·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.92·169-s + 3.05·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21160000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.727990412\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.727990412\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.650524203935103463082212286254, −7.928854697608569505925354632955, −7.72765576009076395669394797812, −7.47319435499693160416064138720, −7.04356867610614022688941648505, −6.79340137275650513220145755505, −6.39693964969214777244098780027, −6.03021444292939359049747667735, −5.45073658544471289738114492843, −5.05684481265554933910522755670, −4.94079577608740647491928818249, −4.38317171589450461420408720334, −3.98588794714837404924292127733, −3.47146228558020806825342370411, −3.35337560757341363456061478935, −2.55786010747979372161898466282, −2.24731930222627930377552506802, −1.42222034249926501806183042596, −1.27481293674721069818678556489, −0.58151288401438805424188346575,
0.58151288401438805424188346575, 1.27481293674721069818678556489, 1.42222034249926501806183042596, 2.24731930222627930377552506802, 2.55786010747979372161898466282, 3.35337560757341363456061478935, 3.47146228558020806825342370411, 3.98588794714837404924292127733, 4.38317171589450461420408720334, 4.94079577608740647491928818249, 5.05684481265554933910522755670, 5.45073658544471289738114492843, 6.03021444292939359049747667735, 6.39693964969214777244098780027, 6.79340137275650513220145755505, 7.04356867610614022688941648505, 7.47319435499693160416064138720, 7.72765576009076395669394797812, 7.928854697608569505925354632955, 8.650524203935103463082212286254