Properties

Label 8-456e4-1.1-c1e4-0-0
Degree $8$
Conductor $43237380096$
Sign $1$
Analytic cond. $175.779$
Root an. cond. $1.90818$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s + 2·7-s + 3·9-s − 3·15-s − 3·17-s − 16·19-s + 2·21-s + 3·23-s − 2·25-s + 8·27-s − 5·29-s − 6·35-s − 7·41-s − 12·43-s − 9·45-s − 9·47-s − 9·49-s − 3·51-s + 17·53-s − 16·57-s − 9·59-s + 2·61-s + 6·63-s + 18·67-s + 3·69-s − 19·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s + 0.755·7-s + 9-s − 0.774·15-s − 0.727·17-s − 3.67·19-s + 0.436·21-s + 0.625·23-s − 2/5·25-s + 1.53·27-s − 0.928·29-s − 1.01·35-s − 1.09·41-s − 1.82·43-s − 1.34·45-s − 1.31·47-s − 9/7·49-s − 0.420·51-s + 2.33·53-s − 2.11·57-s − 1.17·59-s + 0.256·61-s + 0.755·63-s + 2.19·67-s + 0.361·69-s − 2.25·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(175.779\)
Root analytic conductor: \(1.90818\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5163018292\)
\(L(\frac12)\) \(\approx\) \(0.5163018292\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
good5$D_4\times C_2$ \( 1 + 3 T + 11 T^{2} + 24 T^{3} + 54 T^{4} + 24 p T^{5} + 11 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
7$D_{4}$ \( ( 1 - T + 6 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^3$ \( 1 + 15 T^{2} + 56 T^{4} + 15 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 + 3 T + 35 T^{2} + 96 T^{3} + 786 T^{4} + 96 p T^{5} + 35 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 3 T - 19 T^{2} + 66 T^{3} + 24 T^{4} + 66 p T^{5} - 19 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 + 5 T - 31 T^{2} - 10 T^{3} + 1570 T^{4} - 10 p T^{5} - 31 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 45 T^{2} + 2024 T^{4} - 45 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 + 39 T^{2} + 2120 T^{4} + 39 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 + 7 T - 37 T^{2} + 28 T^{3} + 3706 T^{4} + 28 p T^{5} - 37 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 12 T + 55 T^{2} + 36 T^{3} - 120 T^{4} + 36 p T^{5} + 55 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 9 T + 125 T^{2} + 882 T^{3} + 8664 T^{4} + 882 p T^{5} + 125 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 17 T + 119 T^{2} - 1088 T^{3} + 10774 T^{4} - 1088 p T^{5} + 119 p^{2} T^{6} - 17 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 + 9 T - 49 T^{2} + 108 T^{3} + 8640 T^{4} + 108 p T^{5} - 49 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
67$D_4\times C_2$ \( 1 - 18 T + 225 T^{2} - 2106 T^{3} + 16436 T^{4} - 2106 p T^{5} + 225 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 19 T + 137 T^{2} + 1558 T^{3} + 19504 T^{4} + 1558 p T^{5} + 137 p^{2} T^{6} + 19 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2^3$ \( 1 - 113 T^{2} + 7440 T^{4} - 113 p^{2} T^{6} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 + 6 T - 3 T^{2} - 90 T^{3} - 5068 T^{4} - 90 p T^{5} - 3 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 - 154 T^{2} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 9 T - 109 T^{2} - 108 T^{3} + 20970 T^{4} - 108 p T^{5} - 109 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 27 T + 473 T^{2} - 6210 T^{3} + 67062 T^{4} - 6210 p T^{5} + 473 p^{2} T^{6} - 27 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79961272524286964433345407049, −7.77676167283076151248547662878, −7.64475544101979242707318398130, −7.60214248610931069808981348516, −6.83862966856864334618717282795, −6.73280321544057648036614571663, −6.61809709182501694191577846238, −6.60651387671210076274568049346, −6.00181919454474874307956555416, −5.97161491155794860244535191658, −5.25028038751468802472410700363, −5.16493751875721731644196150026, −4.72533244877282792710544312305, −4.66840920298270849449294116441, −4.39522139934633295859352812344, −4.02442529010585267171412503994, −3.87750940412423696688896881007, −3.54493410165920295391710061150, −3.34369411082870113551504688849, −2.79473975621977905721167040647, −2.31551640330033601826994633281, −2.09225977665157019408925212517, −1.75603747263669751300752846849, −1.34631190596867538276927062502, −0.23585980539511422680049855115, 0.23585980539511422680049855115, 1.34631190596867538276927062502, 1.75603747263669751300752846849, 2.09225977665157019408925212517, 2.31551640330033601826994633281, 2.79473975621977905721167040647, 3.34369411082870113551504688849, 3.54493410165920295391710061150, 3.87750940412423696688896881007, 4.02442529010585267171412503994, 4.39522139934633295859352812344, 4.66840920298270849449294116441, 4.72533244877282792710544312305, 5.16493751875721731644196150026, 5.25028038751468802472410700363, 5.97161491155794860244535191658, 6.00181919454474874307956555416, 6.60651387671210076274568049346, 6.61809709182501694191577846238, 6.73280321544057648036614571663, 6.83862966856864334618717282795, 7.60214248610931069808981348516, 7.64475544101979242707318398130, 7.77676167283076151248547662878, 7.79961272524286964433345407049

Graph of the $Z$-function along the critical line