Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} $
Sign $0.886 - 0.461i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.965 + 0.258i)2-s + (−1.22 + 1.22i)3-s + (0.866 − 0.499i)4-s + (0.866 − 1.49i)6-s + (−0.328 − 1.22i)7-s + (−0.707 + 0.707i)8-s − 2.99i·9-s + (3 + 1.73i)11-s + (−0.448 + 1.67i)12-s + (0.328 − 1.22i)13-s + (0.633 + 1.09i)14-s + (0.500 − 0.866i)16-s + (0.776 + 2.89i)18-s − 7.19i·19-s + (1.90 + 1.09i)21-s + (−3.34 − 0.896i)22-s + ⋯
L(s)  = 1  + (−0.683 + 0.183i)2-s + (−0.707 + 0.707i)3-s + (0.433 − 0.249i)4-s + (0.353 − 0.612i)6-s + (−0.124 − 0.462i)7-s + (−0.249 + 0.249i)8-s − 0.999i·9-s + (0.904 + 0.522i)11-s + (−0.129 + 0.482i)12-s + (0.0910 − 0.339i)13-s + (0.169 + 0.293i)14-s + (0.125 − 0.216i)16-s + (0.183 + 0.683i)18-s − 1.65i·19-s + (0.415 + 0.239i)21-s + (−0.713 − 0.191i)22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.886 - 0.461i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.886 - 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
\( \varepsilon \)  =  $0.886 - 0.461i$
motivic weight  =  \(1\)
character  :  $\chi_{450} (443, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 450,\ (\ :1/2),\ 0.886 - 0.461i)\)
\(L(1)\)  \(\approx\)  \(0.808700 + 0.197992i\)
\(L(\frac12)\)  \(\approx\)  \(0.808700 + 0.197992i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (0.965 - 0.258i)T \)
3 \( 1 + (1.22 - 1.22i)T \)
5 \( 1 \)
good7 \( 1 + (0.328 + 1.22i)T + (-6.06 + 3.5i)T^{2} \)
11 \( 1 + (-3 - 1.73i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.328 + 1.22i)T + (-11.2 - 6.5i)T^{2} \)
17 \( 1 + 17iT^{2} \)
19 \( 1 + 7.19iT - 19T^{2} \)
23 \( 1 + (-7.91 - 2.12i)T + (19.9 + 11.5i)T^{2} \)
29 \( 1 + (3.63 - 6.29i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-5.09 - 8.83i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-1.55 + 1.55i)T - 37iT^{2} \)
41 \( 1 + (1.5 - 0.866i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-6.24 + 1.67i)T + (37.2 - 21.5i)T^{2} \)
47 \( 1 + (-5.79 + 1.55i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (-1.55 + 1.55i)T - 53iT^{2} \)
59 \( 1 + (-6.23 - 10.7i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-2 + 3.46i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (12.0 + 3.22i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 + 10.7iT - 71T^{2} \)
73 \( 1 + (3.67 + 3.67i)T + 73iT^{2} \)
79 \( 1 + (-8.66 - 5i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (1.76 + 6.57i)T + (-71.8 + 41.5i)T^{2} \)
89 \( 1 + 8.66T + 89T^{2} \)
97 \( 1 + (-3.79 - 14.1i)T + (-84.0 + 48.5i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.89986066399891145259560615176, −10.38190300253415894713897037831, −9.205959087325125764909491973023, −8.920520361343068263845685345034, −7.15737692338919750702820663714, −6.79182171906068777760544147548, −5.45182631592828314617141548128, −4.50766125782078015708643201299, −3.16302568869081221084260960040, −0.996222834343404558890805546803, 1.05742311178366563993550327673, 2.45549830396006036687089945719, 4.10034308208664472557946152105, 5.73651428018237007185778287154, 6.33114234354064830004121734766, 7.39263103819416734665686420875, 8.285055013817634440684232513436, 9.203899083931438536654292800966, 10.16851754033603220895731867312, 11.21924615335350346397262789344

Graph of the $Z$-function along the critical line