Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} $
Sign $0.630 - 0.776i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.965 + 0.258i)2-s + (1.22 + 1.22i)3-s + (0.866 + 0.499i)4-s + (0.866 + 1.49i)6-s + (0.328 − 1.22i)7-s + (0.707 + 0.707i)8-s + 2.99i·9-s + (3 − 1.73i)11-s + (0.448 + 1.67i)12-s + (−0.328 − 1.22i)13-s + (0.633 − 1.09i)14-s + (0.500 + 0.866i)16-s + (−0.776 + 2.89i)18-s + 7.19i·19-s + (1.90 − 1.09i)21-s + (3.34 − 0.896i)22-s + ⋯
L(s)  = 1  + (0.683 + 0.183i)2-s + (0.707 + 0.707i)3-s + (0.433 + 0.249i)4-s + (0.353 + 0.612i)6-s + (0.124 − 0.462i)7-s + (0.249 + 0.249i)8-s + 0.999i·9-s + (0.904 − 0.522i)11-s + (0.129 + 0.482i)12-s + (−0.0910 − 0.339i)13-s + (0.169 − 0.293i)14-s + (0.125 + 0.216i)16-s + (−0.183 + 0.683i)18-s + 1.65i·19-s + (0.415 − 0.239i)21-s + (0.713 − 0.191i)22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 - 0.776i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.630 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
\( \varepsilon \)  =  $0.630 - 0.776i$
motivic weight  =  \(1\)
character  :  $\chi_{450} (257, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 450,\ (\ :1/2),\ 0.630 - 0.776i)\)
\(L(1)\)  \(\approx\)  \(2.36485 + 1.12668i\)
\(L(\frac12)\)  \(\approx\)  \(2.36485 + 1.12668i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.965 - 0.258i)T \)
3 \( 1 + (-1.22 - 1.22i)T \)
5 \( 1 \)
good7 \( 1 + (-0.328 + 1.22i)T + (-6.06 - 3.5i)T^{2} \)
11 \( 1 + (-3 + 1.73i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (0.328 + 1.22i)T + (-11.2 + 6.5i)T^{2} \)
17 \( 1 - 17iT^{2} \)
19 \( 1 - 7.19iT - 19T^{2} \)
23 \( 1 + (7.91 - 2.12i)T + (19.9 - 11.5i)T^{2} \)
29 \( 1 + (3.63 + 6.29i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-5.09 + 8.83i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (1.55 + 1.55i)T + 37iT^{2} \)
41 \( 1 + (1.5 + 0.866i)T + (20.5 + 35.5i)T^{2} \)
43 \( 1 + (6.24 + 1.67i)T + (37.2 + 21.5i)T^{2} \)
47 \( 1 + (5.79 + 1.55i)T + (40.7 + 23.5i)T^{2} \)
53 \( 1 + (1.55 + 1.55i)T + 53iT^{2} \)
59 \( 1 + (-6.23 + 10.7i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-2 - 3.46i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-12.0 + 3.22i)T + (58.0 - 33.5i)T^{2} \)
71 \( 1 - 10.7iT - 71T^{2} \)
73 \( 1 + (-3.67 + 3.67i)T - 73iT^{2} \)
79 \( 1 + (-8.66 + 5i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + (-1.76 + 6.57i)T + (-71.8 - 41.5i)T^{2} \)
89 \( 1 + 8.66T + 89T^{2} \)
97 \( 1 + (3.79 - 14.1i)T + (-84.0 - 48.5i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.32200532665476816319012114783, −10.16857623251631374273314083037, −9.629475784410240512741899767878, −8.208315145067373982858199855729, −7.82558485248940462553495691870, −6.35777805175789962185007089177, −5.44729998049173227014917124903, −4.02398942855310624887305751029, −3.69531747571070594427839968087, −2.06422295028506845427950275146, 1.62467957371775592098680165423, 2.74602102717999797919058787140, 3.95707688526735035341383745261, 5.11026840784098378038315031140, 6.54887598081765133973915609596, 6.95026754131380141860428767120, 8.279660337359539948811188499098, 9.074524416262457000613676963037, 9.993320441799259733900290247815, 11.31769090760594825533400579869

Graph of the $Z$-function along the critical line