Properties

Label 16-450e8-1.1-c1e8-0-3
Degree $16$
Conductor $1.682\times 10^{21}$
Sign $1$
Analytic cond. $27791.8$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·11-s + 16-s − 16·31-s − 48·41-s − 32·61-s + 9·81-s + 96·101-s + 34·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s − 12·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 3.61·11-s + 1/4·16-s − 2.87·31-s − 7.49·41-s − 4.09·61-s + 81-s + 9.55·101-s + 3.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s − 0.904·176-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{16} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(27791.8\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{16} \cdot 5^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1908565486\)
\(L(\frac12)\) \(\approx\) \(0.1908565486\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T^{4} + T^{8} \)
3 \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
5 \( 1 \)
good7 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{2} \)
11 \( ( 1 + 3 T + 14 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{4} \)
13 \( ( 1 - 337 T^{4} + p^{4} T^{8} )( 1 + 191 T^{4} + p^{4} T^{8} ) \)
17 \( ( 1 + 47 T^{4} + p^{4} T^{8} )^{2} \)
19 \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{4} \)
23 \( 1 + 958 T^{4} + 637923 T^{8} + 958 p^{4} T^{12} + p^{8} T^{16} \)
29 \( ( 1 - 46 T^{2} + 1275 T^{4} - 46 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 - 7 T + p T^{2} )^{4}( 1 + 11 T + p T^{2} )^{4} \)
37 \( ( 1 - 2062 T^{4} + p^{4} T^{8} )^{2} \)
41 \( ( 1 + 12 T + 89 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{4} \)
43 \( 1 + 3577 T^{4} + 9376128 T^{8} + 3577 p^{4} T^{12} + p^{8} T^{16} \)
47 \( 1 + 1918 T^{4} - 1200957 T^{8} + 1918 p^{4} T^{12} + p^{8} T^{16} \)
53 \( ( 1 - 4174 T^{4} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 43 T^{2} - 1632 T^{4} - 43 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 + 8 T + 3 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( ( 1 - 8809 T^{4} + p^{4} T^{8} )( 1 + 2903 T^{4} + p^{4} T^{8} ) \)
71 \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{4} \)
73 \( ( 1 - 1054 T^{4} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 11 T^{2} + p^{2} T^{4} )^{2}( 1 + 131 T^{2} + p^{2} T^{4} )^{2} \)
83 \( 1 + 6553 T^{4} - 4516512 T^{8} + 6553 p^{4} T^{12} + p^{8} T^{16} \)
89 \( ( 1 + 175 T^{2} + p^{2} T^{4} )^{4} \)
97 \( 1 + 16417 T^{4} + 180988608 T^{8} + 16417 p^{4} T^{12} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.95091554055800327763926489964, −4.86284770496604200918936157666, −4.84996107510514202045537497253, −4.56482447860314277897722331012, −4.44111732952015781981362646042, −4.23302501151927788344949989748, −3.80459739735309075213788624186, −3.78313904990275324470123091931, −3.61448504303322913696759081148, −3.58412739069110919752260029644, −3.45065169928727962165776898290, −3.21181300232146192634877644100, −3.13986599142439314715877444946, −2.95737061952475509572288313280, −2.78546498501407582595729293404, −2.53896050480412485614984564258, −2.33231696849821724972722525335, −2.18159339764586540696604536865, −1.99624713374154052971030551586, −1.86935696868450519155710332313, −1.51062300258471178478728731320, −1.47228465709926853373782177300, −1.18577114716356761928953018236, −0.27706917331607085837990708046, −0.19224318159838953662073708944, 0.19224318159838953662073708944, 0.27706917331607085837990708046, 1.18577114716356761928953018236, 1.47228465709926853373782177300, 1.51062300258471178478728731320, 1.86935696868450519155710332313, 1.99624713374154052971030551586, 2.18159339764586540696604536865, 2.33231696849821724972722525335, 2.53896050480412485614984564258, 2.78546498501407582595729293404, 2.95737061952475509572288313280, 3.13986599142439314715877444946, 3.21181300232146192634877644100, 3.45065169928727962165776898290, 3.58412739069110919752260029644, 3.61448504303322913696759081148, 3.78313904990275324470123091931, 3.80459739735309075213788624186, 4.23302501151927788344949989748, 4.44111732952015781981362646042, 4.56482447860314277897722331012, 4.84996107510514202045537497253, 4.86284770496604200918936157666, 4.95091554055800327763926489964

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.