Properties

Label 8-450e4-1.1-c1e4-0-1
Degree $8$
Conductor $41006250000$
Sign $1$
Analytic cond. $166.708$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·7-s − 12·13-s − 16-s + 16·31-s − 12·37-s + 72·49-s − 40·61-s + 24·67-s + 24·73-s + 144·91-s + 48·97-s + 12·103-s + 12·112-s + 8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 72·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 4.53·7-s − 3.32·13-s − 1/4·16-s + 2.87·31-s − 1.97·37-s + 72/7·49-s − 5.12·61-s + 2.93·67-s + 2.80·73-s + 15.0·91-s + 4.87·97-s + 1.18·103-s + 1.13·112-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 5.53·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(166.708\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2572696333\)
\(L(\frac12)\) \(\approx\) \(0.2572696333\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 958 T^{4} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 64 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 - 718 T^{4} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 100 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 13294 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 160 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 24 T + 288 T^{2} - 24 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.959558892980173253887597740478, −7.65359448086521705782576714688, −7.46730349907315239632715518476, −7.09271576405041976064577955761, −6.99885044727681020528064331254, −6.82827530481503565730328579584, −6.64009482320710821630093794064, −6.18633157034567024980305881875, −6.09543985722002574157990239534, −6.04357403697218999997145279834, −5.77398418277142679596444837232, −4.92358957330997213304595705975, −4.88743582269822032033618894449, −4.75782807574886707819103621006, −4.72851376793497843396238970036, −3.74708910966438985581309200602, −3.69561833850537807544706724742, −3.47921868070753582320687996485, −3.17072273292877850986959807072, −2.77578894851676729461070996670, −2.60039985594810480769743723767, −2.39994272450561436864078295071, −1.89124263769026721612858904367, −0.70700108465147644722161019265, −0.26062411282232008090013267252, 0.26062411282232008090013267252, 0.70700108465147644722161019265, 1.89124263769026721612858904367, 2.39994272450561436864078295071, 2.60039985594810480769743723767, 2.77578894851676729461070996670, 3.17072273292877850986959807072, 3.47921868070753582320687996485, 3.69561833850537807544706724742, 3.74708910966438985581309200602, 4.72851376793497843396238970036, 4.75782807574886707819103621006, 4.88743582269822032033618894449, 4.92358957330997213304595705975, 5.77398418277142679596444837232, 6.04357403697218999997145279834, 6.09543985722002574157990239534, 6.18633157034567024980305881875, 6.64009482320710821630093794064, 6.82827530481503565730328579584, 6.99885044727681020528064331254, 7.09271576405041976064577955761, 7.46730349907315239632715518476, 7.65359448086521705782576714688, 7.959558892980173253887597740478

Graph of the $Z$-function along the critical line