Properties

Label 8-450e4-1.1-c1e4-0-5
Degree $8$
Conductor $41006250000$
Sign $1$
Analytic cond. $166.708$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s + 4-s − 4·6-s − 4·7-s − 2·8-s + 3·9-s + 2·11-s − 2·12-s − 8·14-s − 4·16-s − 4·17-s + 6·18-s − 12·19-s + 8·21-s + 4·22-s − 4·23-s + 4·24-s − 10·27-s − 4·28-s + 12·29-s − 8·31-s − 2·32-s − 4·33-s − 8·34-s + 3·36-s + 32·37-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s + 1/2·4-s − 1.63·6-s − 1.51·7-s − 0.707·8-s + 9-s + 0.603·11-s − 0.577·12-s − 2.13·14-s − 16-s − 0.970·17-s + 1.41·18-s − 2.75·19-s + 1.74·21-s + 0.852·22-s − 0.834·23-s + 0.816·24-s − 1.92·27-s − 0.755·28-s + 2.22·29-s − 1.43·31-s − 0.353·32-s − 0.696·33-s − 1.37·34-s + 1/2·36-s + 5.26·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(166.708\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.616380583\)
\(L(\frac12)\) \(\approx\) \(1.616380583\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - T + T^{2} )^{2} \)
3$C_2^2$ \( 1 + 2 T + T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 + 4 T + 4 T^{2} - 8 T^{3} - 17 T^{4} - 8 p T^{5} + 4 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 2 T - 13 T^{2} + 10 T^{3} + 124 T^{4} + 10 p T^{5} - 13 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2^3$ \( 1 - 20 T^{2} + 231 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 + 2 T + 11 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 + 6 T + 41 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 4 T - 10 T^{2} - 80 T^{3} - 221 T^{4} - 80 p T^{5} - 10 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 6 T + 7 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 8 T - 8 T^{2} + 80 T^{3} + 2239 T^{4} + 80 p T^{5} - 8 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - T - 40 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 10 T - 5 T^{2} + 190 T^{3} + 4876 T^{4} + 190 p T^{5} - 5 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 4 T - 76 T^{2} + 8 T^{3} + 5503 T^{4} + 8 p T^{5} - 76 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 - 12 T + 136 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 2 T + 35 T^{2} - 298 T^{3} - 2756 T^{4} - 298 p T^{5} + 35 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 4 T - 104 T^{2} - 8 T^{3} + 9703 T^{4} - 8 p T^{5} - 104 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 14 T + 19 T^{2} + 602 T^{3} + 13708 T^{4} + 602 p T^{5} + 19 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 + 136 T^{2} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 - 10 T + 75 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 - 104 T^{2} + 4575 T^{4} - 104 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 - 4 T - 67 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 16 T + 218 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 13 T + 72 T^{2} + 13 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.942057358324840163283754998058, −7.87669525043433559340005638348, −7.40384526576942493299076264572, −7.12908128955509097138178391139, −6.73753042409328170542425827272, −6.51180642990837421445938485240, −6.50661387261909198925683371210, −6.18255658830225352018272243460, −6.06282639687909995976393198004, −5.93859080442780097752189167097, −5.45079880575058505738232033927, −5.40260925178846966322644000131, −4.73249618368452611864812295828, −4.70347292705058828804075686382, −4.29490079782177089485085631554, −4.13327770580837423371503938398, −4.03039882103822475083830124876, −3.81502647006999228312765959573, −3.17759902250341638370801705926, −3.03791970702449874563586400003, −2.33978666850735247412881546720, −2.29049521467912837159803230977, −1.98725334055698346864776450894, −0.842468874971710756379977911906, −0.50842669699888039317717842944, 0.50842669699888039317717842944, 0.842468874971710756379977911906, 1.98725334055698346864776450894, 2.29049521467912837159803230977, 2.33978666850735247412881546720, 3.03791970702449874563586400003, 3.17759902250341638370801705926, 3.81502647006999228312765959573, 4.03039882103822475083830124876, 4.13327770580837423371503938398, 4.29490079782177089485085631554, 4.70347292705058828804075686382, 4.73249618368452611864812295828, 5.40260925178846966322644000131, 5.45079880575058505738232033927, 5.93859080442780097752189167097, 6.06282639687909995976393198004, 6.18255658830225352018272243460, 6.50661387261909198925683371210, 6.51180642990837421445938485240, 6.73753042409328170542425827272, 7.12908128955509097138178391139, 7.40384526576942493299076264572, 7.87669525043433559340005638348, 7.942057358324840163283754998058

Graph of the $Z$-function along the critical line