Properties

Label 2-45-1.1-c7-0-2
Degree $2$
Conductor $45$
Sign $1$
Analytic cond. $14.0573$
Root an. cond. $3.74931$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.28·2-s − 126.·4-s + 125·5-s − 538.·7-s + 326.·8-s − 160.·10-s + 1.21e3·11-s + 7.07e3·13-s + 690.·14-s + 1.57e4·16-s + 3.34e3·17-s + 2.21e4·19-s − 1.57e4·20-s − 1.55e3·22-s + 5.85e4·23-s + 1.56e4·25-s − 9.06e3·26-s + 6.80e4·28-s + 2.06e5·29-s + 1.77e5·31-s − 6.19e4·32-s − 4.29e3·34-s − 6.72e4·35-s − 2.84e5·37-s − 2.84e4·38-s + 4.07e4·40-s − 6.27e5·41-s + ⋯
L(s)  = 1  − 0.113·2-s − 0.987·4-s + 0.447·5-s − 0.593·7-s + 0.225·8-s − 0.0506·10-s + 0.275·11-s + 0.892·13-s + 0.0672·14-s + 0.961·16-s + 0.165·17-s + 0.741·19-s − 0.441·20-s − 0.0311·22-s + 1.00·23-s + 0.199·25-s − 0.101·26-s + 0.585·28-s + 1.57·29-s + 1.07·31-s − 0.334·32-s − 0.0187·34-s − 0.265·35-s − 0.922·37-s − 0.0840·38-s + 0.100·40-s − 1.42·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(14.0573\)
Root analytic conductor: \(3.74931\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.438089847\)
\(L(\frac12)\) \(\approx\) \(1.438089847\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 125T \)
good2 \( 1 + 1.28T + 128T^{2} \)
7 \( 1 + 538.T + 8.23e5T^{2} \)
11 \( 1 - 1.21e3T + 1.94e7T^{2} \)
13 \( 1 - 7.07e3T + 6.27e7T^{2} \)
17 \( 1 - 3.34e3T + 4.10e8T^{2} \)
19 \( 1 - 2.21e4T + 8.93e8T^{2} \)
23 \( 1 - 5.85e4T + 3.40e9T^{2} \)
29 \( 1 - 2.06e5T + 1.72e10T^{2} \)
31 \( 1 - 1.77e5T + 2.75e10T^{2} \)
37 \( 1 + 2.84e5T + 9.49e10T^{2} \)
41 \( 1 + 6.27e5T + 1.94e11T^{2} \)
43 \( 1 + 1.64e5T + 2.71e11T^{2} \)
47 \( 1 - 4.49e5T + 5.06e11T^{2} \)
53 \( 1 - 7.30e5T + 1.17e12T^{2} \)
59 \( 1 + 1.42e6T + 2.48e12T^{2} \)
61 \( 1 + 2.66e5T + 3.14e12T^{2} \)
67 \( 1 - 2.95e6T + 6.06e12T^{2} \)
71 \( 1 + 9.21e5T + 9.09e12T^{2} \)
73 \( 1 - 4.25e6T + 1.10e13T^{2} \)
79 \( 1 - 6.28e6T + 1.92e13T^{2} \)
83 \( 1 - 9.17e6T + 2.71e13T^{2} \)
89 \( 1 + 2.42e5T + 4.42e13T^{2} \)
97 \( 1 + 2.59e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.00493737382901278011603018360, −13.39297133610143059644540145269, −12.15185124406984080145182921076, −10.45154286020594823189006120946, −9.416490350687852440185497505153, −8.369841317355816189714843271932, −6.53761132291264760759620629903, −5.04126837951953862533885090518, −3.37492276241368616820483871399, −0.970534731658867784971968568513, 0.970534731658867784971968568513, 3.37492276241368616820483871399, 5.04126837951953862533885090518, 6.53761132291264760759620629903, 8.369841317355816189714843271932, 9.416490350687852440185497505153, 10.45154286020594823189006120946, 12.15185124406984080145182921076, 13.39297133610143059644540145269, 14.00493737382901278011603018360

Graph of the $Z$-function along the critical line