Properties

Label 2-45-9.7-c3-0-5
Degree $2$
Conductor $45$
Sign $0.958 - 0.286i$
Analytic cond. $2.65508$
Root an. cond. $1.62944$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0874 − 0.151i)2-s + (5.19 + 0.151i)3-s + (3.98 + 6.90i)4-s + (−2.5 − 4.33i)5-s + (0.477 − 0.773i)6-s + (−4.23 + 7.32i)7-s + 2.79·8-s + (26.9 + 1.57i)9-s − 0.874·10-s + (15.7 − 27.2i)11-s + (19.6 + 36.4i)12-s + (−13.4 − 23.2i)13-s + (0.740 + 1.28i)14-s + (−12.3 − 22.8i)15-s + (−31.6 + 54.7i)16-s − 44.3·17-s + ⋯
L(s)  = 1  + (0.0309 − 0.0535i)2-s + (0.999 + 0.0291i)3-s + (0.498 + 0.862i)4-s + (−0.223 − 0.387i)5-s + (0.0324 − 0.0526i)6-s + (−0.228 + 0.395i)7-s + 0.123·8-s + (0.998 + 0.0583i)9-s − 0.0276·10-s + (0.431 − 0.747i)11-s + (0.472 + 0.876i)12-s + (−0.286 − 0.496i)13-s + (0.0141 + 0.0244i)14-s + (−0.212 − 0.393i)15-s + (−0.494 + 0.856i)16-s − 0.632·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.958 - 0.286i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.958 - 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $0.958 - 0.286i$
Analytic conductor: \(2.65508\)
Root analytic conductor: \(1.62944\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :3/2),\ 0.958 - 0.286i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.81721 + 0.266036i\)
\(L(\frac12)\) \(\approx\) \(1.81721 + 0.266036i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-5.19 - 0.151i)T \)
5 \( 1 + (2.5 + 4.33i)T \)
good2 \( 1 + (-0.0874 + 0.151i)T + (-4 - 6.92i)T^{2} \)
7 \( 1 + (4.23 - 7.32i)T + (-171.5 - 297. i)T^{2} \)
11 \( 1 + (-15.7 + 27.2i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (13.4 + 23.2i)T + (-1.09e3 + 1.90e3i)T^{2} \)
17 \( 1 + 44.3T + 4.91e3T^{2} \)
19 \( 1 + 90.2T + 6.85e3T^{2} \)
23 \( 1 + (97.1 + 168. i)T + (-6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + (1.87 - 3.24i)T + (-1.21e4 - 2.11e4i)T^{2} \)
31 \( 1 + (-125. - 217. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + 62.2T + 5.06e4T^{2} \)
41 \( 1 + (-102. - 176. i)T + (-3.44e4 + 5.96e4i)T^{2} \)
43 \( 1 + (-263. + 456. i)T + (-3.97e4 - 6.88e4i)T^{2} \)
47 \( 1 + (77.8 - 134. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + 141.T + 1.48e5T^{2} \)
59 \( 1 + (-246. - 427. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (-379. + 657. i)T + (-1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (-271. - 470. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + 928.T + 3.57e5T^{2} \)
73 \( 1 - 608.T + 3.89e5T^{2} \)
79 \( 1 + (307. - 532. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + (537. - 931. i)T + (-2.85e5 - 4.95e5i)T^{2} \)
89 \( 1 - 1.50e3T + 7.04e5T^{2} \)
97 \( 1 + (-166. + 288. i)T + (-4.56e5 - 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.52645127040185896794504904376, −14.23740486360877440491890479140, −12.93546138369724728053823854732, −12.19180970826160065294246237581, −10.60792448522987558285264519238, −8.842235804070830816872315385224, −8.182439607014758553411323289523, −6.63624926200621944600628098967, −4.11553204742542410785112687333, −2.58428612889672244095595164725, 2.09297552573748822880765211191, 4.20018360126835296418777212789, 6.49952833781939380312495125318, 7.56891031611451449660741584176, 9.350612851872587895812426769509, 10.26555658111203054151601414585, 11.66130927265110064576032108598, 13.27142800246579590024308655673, 14.36825821764204557617089207470, 15.11045838575390954301676108615

Graph of the $Z$-function along the critical line