Properties

Label 2-45-45.22-c2-0-2
Degree $2$
Conductor $45$
Sign $0.788 - 0.615i$
Analytic cond. $1.22616$
Root an. cond. $1.10732$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0492 − 0.183i)2-s + (−2.37 + 1.82i)3-s + (3.43 + 1.98i)4-s + (4.90 − 0.964i)5-s + (0.218 + 0.526i)6-s + (−2.33 + 8.70i)7-s + (1.07 − 1.07i)8-s + (2.30 − 8.69i)9-s + (0.0643 − 0.948i)10-s + (−7.04 − 12.1i)11-s + (−11.7 + 1.56i)12-s + (−3.46 − 12.9i)13-s + (1.48 + 0.856i)14-s + (−9.90 + 11.2i)15-s + (7.78 + 13.4i)16-s + (−0.740 − 0.740i)17-s + ⋯
L(s)  = 1  + (0.0246 − 0.0918i)2-s + (−0.792 + 0.609i)3-s + (0.858 + 0.495i)4-s + (0.981 − 0.192i)5-s + (0.0364 + 0.0877i)6-s + (−0.333 + 1.24i)7-s + (0.133 − 0.133i)8-s + (0.256 − 0.966i)9-s + (0.00643 − 0.0948i)10-s + (−0.640 − 1.10i)11-s + (−0.982 + 0.130i)12-s + (−0.266 − 0.995i)13-s + (0.105 + 0.0611i)14-s + (−0.660 + 0.751i)15-s + (0.486 + 0.842i)16-s + (−0.0435 − 0.0435i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $0.788 - 0.615i$
Analytic conductor: \(1.22616\)
Root analytic conductor: \(1.10732\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :1),\ 0.788 - 0.615i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.06164 + 0.365213i\)
\(L(\frac12)\) \(\approx\) \(1.06164 + 0.365213i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (2.37 - 1.82i)T \)
5 \( 1 + (-4.90 + 0.964i)T \)
good2 \( 1 + (-0.0492 + 0.183i)T + (-3.46 - 2i)T^{2} \)
7 \( 1 + (2.33 - 8.70i)T + (-42.4 - 24.5i)T^{2} \)
11 \( 1 + (7.04 + 12.1i)T + (-60.5 + 104. i)T^{2} \)
13 \( 1 + (3.46 + 12.9i)T + (-146. + 84.5i)T^{2} \)
17 \( 1 + (0.740 + 0.740i)T + 289iT^{2} \)
19 \( 1 - 7.09iT - 361T^{2} \)
23 \( 1 + (5.10 + 19.0i)T + (-458. + 264.5i)T^{2} \)
29 \( 1 + (6.18 - 3.56i)T + (420.5 - 728. i)T^{2} \)
31 \( 1 + (-13.0 + 22.6i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (23.0 + 23.0i)T + 1.36e3iT^{2} \)
41 \( 1 + (36.0 - 62.4i)T + (-840.5 - 1.45e3i)T^{2} \)
43 \( 1 + (12.0 + 3.22i)T + (1.60e3 + 924.5i)T^{2} \)
47 \( 1 + (13.9 - 51.8i)T + (-1.91e3 - 1.10e3i)T^{2} \)
53 \( 1 + (-17.2 + 17.2i)T - 2.80e3iT^{2} \)
59 \( 1 + (27.5 + 15.9i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-40.7 - 70.5i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-64.1 + 17.1i)T + (3.88e3 - 2.24e3i)T^{2} \)
71 \( 1 + 36.3T + 5.04e3T^{2} \)
73 \( 1 + (-2.90 + 2.90i)T - 5.32e3iT^{2} \)
79 \( 1 + (71.8 - 41.5i)T + (3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (-51.3 - 13.7i)T + (5.96e3 + 3.44e3i)T^{2} \)
89 \( 1 - 22.5iT - 7.92e3T^{2} \)
97 \( 1 + (9.03 - 33.7i)T + (-8.14e3 - 4.70e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94345871711791226015778432804, −14.94273433101468109765290995636, −13.04442193312591905189723255184, −12.19081373603909683436400386228, −10.97491857996281393942867960954, −9.927289043958000650984569499952, −8.435484229737952826793837026219, −6.27568119541693274652195504756, −5.48149233137073482344924466037, −2.86578438158306193052860859624, 1.86147855442524058216581738880, 5.14491951726311954575047487350, 6.68886094895842742682931707378, 7.22984870917442444769209547212, 9.946888474611894721765627637532, 10.59316336174269487270584544959, 11.90146380532856324075556681799, 13.26652378479938301332814206953, 14.12920482446677572920691979177, 15.65055136046647046713109952597

Graph of the $Z$-function along the critical line