Properties

Label 2-448-1.1-c5-0-47
Degree $2$
Conductor $448$
Sign $-1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15.5·3-s − 96.7·5-s + 49·7-s − 0.445·9-s + 281.·11-s + 269.·13-s − 1.50e3·15-s + 1.71e3·17-s − 1.17e3·19-s + 763.·21-s − 785.·23-s + 6.23e3·25-s − 3.79e3·27-s − 6.14e3·29-s + 7.00e3·31-s + 4.38e3·33-s − 4.73e3·35-s + 1.14e4·37-s + 4.19e3·39-s − 1.32e4·41-s − 1.98e4·43-s + 43.0·45-s − 6.88e3·47-s + 2.40e3·49-s + 2.67e4·51-s − 8.65e3·53-s − 2.72e4·55-s + ⋯
L(s)  = 1  + 0.999·3-s − 1.73·5-s + 0.377·7-s − 0.00183·9-s + 0.701·11-s + 0.442·13-s − 1.72·15-s + 1.44·17-s − 0.745·19-s + 0.377·21-s − 0.309·23-s + 1.99·25-s − 1.00·27-s − 1.35·29-s + 1.30·31-s + 0.700·33-s − 0.653·35-s + 1.38·37-s + 0.441·39-s − 1.23·41-s − 1.63·43-s + 0.00316·45-s − 0.454·47-s + 0.142·49-s + 1.44·51-s − 0.423·53-s − 1.21·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 49T \)
good3 \( 1 - 15.5T + 243T^{2} \)
5 \( 1 + 96.7T + 3.12e3T^{2} \)
11 \( 1 - 281.T + 1.61e5T^{2} \)
13 \( 1 - 269.T + 3.71e5T^{2} \)
17 \( 1 - 1.71e3T + 1.41e6T^{2} \)
19 \( 1 + 1.17e3T + 2.47e6T^{2} \)
23 \( 1 + 785.T + 6.43e6T^{2} \)
29 \( 1 + 6.14e3T + 2.05e7T^{2} \)
31 \( 1 - 7.00e3T + 2.86e7T^{2} \)
37 \( 1 - 1.14e4T + 6.93e7T^{2} \)
41 \( 1 + 1.32e4T + 1.15e8T^{2} \)
43 \( 1 + 1.98e4T + 1.47e8T^{2} \)
47 \( 1 + 6.88e3T + 2.29e8T^{2} \)
53 \( 1 + 8.65e3T + 4.18e8T^{2} \)
59 \( 1 + 4.78e4T + 7.14e8T^{2} \)
61 \( 1 + 5.27e4T + 8.44e8T^{2} \)
67 \( 1 + 2.40e4T + 1.35e9T^{2} \)
71 \( 1 + 1.25e4T + 1.80e9T^{2} \)
73 \( 1 - 4.07e3T + 2.07e9T^{2} \)
79 \( 1 - 1.19e4T + 3.07e9T^{2} \)
83 \( 1 - 8.19e4T + 3.93e9T^{2} \)
89 \( 1 + 9.69e4T + 5.58e9T^{2} \)
97 \( 1 + 2.64e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.662997700123196625103277743056, −8.632133469694280567934644288930, −8.055293378492272352878430780646, −7.51149085407284730129050631782, −6.20612156606446715442394197321, −4.66289318613400213650773080573, −3.71896435759485326372570724066, −3.09740284118574835355016953005, −1.46051276429475999513353927990, 0, 1.46051276429475999513353927990, 3.09740284118574835355016953005, 3.71896435759485326372570724066, 4.66289318613400213650773080573, 6.20612156606446715442394197321, 7.51149085407284730129050631782, 8.055293378492272352878430780646, 8.632133469694280567934644288930, 9.662997700123196625103277743056

Graph of the $Z$-function along the critical line