Properties

Label 10-448e5-1.1-c5e5-0-0
Degree $10$
Conductor $1.805\times 10^{13}$
Sign $1$
Analytic cond. $1.91510\times 10^{9}$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·3-s − 36·5-s + 245·7-s − 239·9-s − 116·11-s − 40·13-s − 360·15-s − 402·17-s + 3.58e3·19-s + 2.45e3·21-s + 472·23-s − 2.35e3·25-s − 3.65e3·27-s − 4.75e3·29-s − 1.05e4·31-s − 1.16e3·33-s − 8.82e3·35-s − 1.96e4·37-s − 400·39-s + 2.33e4·41-s − 2.20e4·43-s + 8.60e3·45-s + 1.60e4·47-s + 3.60e4·49-s − 4.02e3·51-s − 5.42e4·53-s + 4.17e3·55-s + ⋯
L(s)  = 1  + 0.641·3-s − 0.643·5-s + 1.88·7-s − 0.983·9-s − 0.289·11-s − 0.0656·13-s − 0.413·15-s − 0.337·17-s + 2.27·19-s + 1.21·21-s + 0.186·23-s − 0.754·25-s − 0.964·27-s − 1.04·29-s − 1.96·31-s − 0.185·33-s − 1.21·35-s − 2.35·37-s − 0.0421·39-s + 2.17·41-s − 1.81·43-s + 0.633·45-s + 1.05·47-s + 15/7·49-s − 0.216·51-s − 2.65·53-s + 0.186·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{30} \cdot 7^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{30} \cdot 7^{5}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(2^{30} \cdot 7^{5}\)
Sign: $1$
Analytic conductor: \(1.91510\times 10^{9}\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 2^{30} \cdot 7^{5} ,\ ( \ : 5/2, 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(8.829801015\)
\(L(\frac12)\) \(\approx\) \(8.829801015\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 - p^{2} T )^{5} \)
good3$C_2 \wr S_5$ \( 1 - 10 T + 113 p T^{2} - 2128 T^{3} + 19946 p T^{4} + 39508 p^{2} T^{5} + 19946 p^{6} T^{6} - 2128 p^{10} T^{7} + 113 p^{16} T^{8} - 10 p^{20} T^{9} + p^{25} T^{10} \)
5$C_2 \wr S_5$ \( 1 + 36 T + 3653 T^{2} + 107328 T^{3} + 2121486 T^{4} + 190040696 T^{5} + 2121486 p^{5} T^{6} + 107328 p^{10} T^{7} + 3653 p^{15} T^{8} + 36 p^{20} T^{9} + p^{25} T^{10} \)
11$C_2 \wr S_5$ \( 1 + 116 T + 31781 p T^{2} - 98937424 T^{3} + 2033425886 p T^{4} - 38068711249288 T^{5} + 2033425886 p^{6} T^{6} - 98937424 p^{10} T^{7} + 31781 p^{16} T^{8} + 116 p^{20} T^{9} + p^{25} T^{10} \)
13$C_2 \wr S_5$ \( 1 + 40 T + 1026829 T^{2} + 22392096 T^{3} + 483227848334 T^{4} + 5352111455792 T^{5} + 483227848334 p^{5} T^{6} + 22392096 p^{10} T^{7} + 1026829 p^{15} T^{8} + 40 p^{20} T^{9} + p^{25} T^{10} \)
17$C_2 \wr S_5$ \( 1 + 402 T + 2494317 T^{2} - 412658184 T^{3} + 2924727683042 T^{4} - 3146201469653652 T^{5} + 2924727683042 p^{5} T^{6} - 412658184 p^{10} T^{7} + 2494317 p^{15} T^{8} + 402 p^{20} T^{9} + p^{25} T^{10} \)
19$C_2 \wr S_5$ \( 1 - 3582 T + 9827523 T^{2} - 16342376304 T^{3} + 30538021256094 T^{4} - 44119834475089636 T^{5} + 30538021256094 p^{5} T^{6} - 16342376304 p^{10} T^{7} + 9827523 p^{15} T^{8} - 3582 p^{20} T^{9} + p^{25} T^{10} \)
23$C_2 \wr S_5$ \( 1 - 472 T + 1516723 T^{2} - 11609221536 T^{3} + 42313873705610 T^{4} + 6647101058224112 T^{5} + 42313873705610 p^{5} T^{6} - 11609221536 p^{10} T^{7} + 1516723 p^{15} T^{8} - 472 p^{20} T^{9} + p^{25} T^{10} \)
29$C_2 \wr S_5$ \( 1 + 4754 T + 52384953 T^{2} + 11341595864 T^{3} + 369022305936146 T^{4} - 3920494818790431156 T^{5} + 369022305936146 p^{5} T^{6} + 11341595864 p^{10} T^{7} + 52384953 p^{15} T^{8} + 4754 p^{20} T^{9} + p^{25} T^{10} \)
31$C_2 \wr S_5$ \( 1 + 10500 T + 76539051 T^{2} + 284611974576 T^{3} + 1060623354119130 T^{4} + 2492944253792670872 T^{5} + 1060623354119130 p^{5} T^{6} + 284611974576 p^{10} T^{7} + 76539051 p^{15} T^{8} + 10500 p^{20} T^{9} + p^{25} T^{10} \)
37$C_2 \wr S_5$ \( 1 + 19642 T + 466114945 T^{2} + 5657842628856 T^{3} + 72842511023507570 T^{4} + \)\(59\!\cdots\!68\)\( T^{5} + 72842511023507570 p^{5} T^{6} + 5657842628856 p^{10} T^{7} + 466114945 p^{15} T^{8} + 19642 p^{20} T^{9} + p^{25} T^{10} \)
41$C_2 \wr S_5$ \( 1 - 23398 T + 445057093 T^{2} - 3939435920488 T^{3} + 32218671451601794 T^{4} - \)\(14\!\cdots\!80\)\( T^{5} + 32218671451601794 p^{5} T^{6} - 3939435920488 p^{10} T^{7} + 445057093 p^{15} T^{8} - 23398 p^{20} T^{9} + p^{25} T^{10} \)
43$C_2 \wr S_5$ \( 1 + 22044 T + 570706743 T^{2} + 9401058679824 T^{3} + 146268887597177994 T^{4} + \)\(18\!\cdots\!84\)\( T^{5} + 146268887597177994 p^{5} T^{6} + 9401058679824 p^{10} T^{7} + 570706743 p^{15} T^{8} + 22044 p^{20} T^{9} + p^{25} T^{10} \)
47$C_2 \wr S_5$ \( 1 - 16004 T + 340863867 T^{2} - 8699395854512 T^{3} + 160979456174948570 T^{4} - \)\(16\!\cdots\!36\)\( T^{5} + 160979456174948570 p^{5} T^{6} - 8699395854512 p^{10} T^{7} + 340863867 p^{15} T^{8} - 16004 p^{20} T^{9} + p^{25} T^{10} \)
53$C_2 \wr S_5$ \( 1 + 54246 T + 2492541153 T^{2} + 79964296725032 T^{3} + 2197067692674110242 T^{4} + \)\(48\!\cdots\!44\)\( T^{5} + 2197067692674110242 p^{5} T^{6} + 79964296725032 p^{10} T^{7} + 2492541153 p^{15} T^{8} + 54246 p^{20} T^{9} + p^{25} T^{10} \)
59$C_2 \wr S_5$ \( 1 - 74366 T + 4804256395 T^{2} - 213928243313072 T^{3} + 7738783304213094334 T^{4} - \)\(22\!\cdots\!04\)\( T^{5} + 7738783304213094334 p^{5} T^{6} - 213928243313072 p^{10} T^{7} + 4804256395 p^{15} T^{8} - 74366 p^{20} T^{9} + p^{25} T^{10} \)
61$C_2 \wr S_5$ \( 1 + 68316 T + 5359746685 T^{2} + 231158528539008 T^{3} + 9975310405341076238 T^{4} + \)\(29\!\cdots\!00\)\( T^{5} + 9975310405341076238 p^{5} T^{6} + 231158528539008 p^{10} T^{7} + 5359746685 p^{15} T^{8} + 68316 p^{20} T^{9} + p^{25} T^{10} \)
67$C_2 \wr S_5$ \( 1 - 26560 T + 3072163935 T^{2} - 14963925864960 T^{3} + 3454312450861814010 T^{4} + \)\(39\!\cdots\!76\)\( T^{5} + 3454312450861814010 p^{5} T^{6} - 14963925864960 p^{10} T^{7} + 3072163935 p^{15} T^{8} - 26560 p^{20} T^{9} + p^{25} T^{10} \)
71$C_2 \wr S_5$ \( 1 - 93072 T + 8162094659 T^{2} - 356745720666048 T^{3} + 17458024941327173418 T^{4} - \)\(57\!\cdots\!16\)\( T^{5} + 17458024941327173418 p^{5} T^{6} - 356745720666048 p^{10} T^{7} + 8162094659 p^{15} T^{8} - 93072 p^{20} T^{9} + p^{25} T^{10} \)
73$C_2 \wr S_5$ \( 1 - 136098 T + 16861404853 T^{2} - 1249291619602392 T^{3} + 83745174448877413682 T^{4} - \)\(40\!\cdots\!08\)\( T^{5} + 83745174448877413682 p^{5} T^{6} - 1249291619602392 p^{10} T^{7} + 16861404853 p^{15} T^{8} - 136098 p^{20} T^{9} + p^{25} T^{10} \)
79$C_2 \wr S_5$ \( 1 - 96080 T + 15884538251 T^{2} - 1068290049163968 T^{3} + 98830820404514935690 T^{4} - \)\(47\!\cdots\!96\)\( T^{5} + 98830820404514935690 p^{5} T^{6} - 1068290049163968 p^{10} T^{7} + 15884538251 p^{15} T^{8} - 96080 p^{20} T^{9} + p^{25} T^{10} \)
83$C_2 \wr S_5$ \( 1 - 145894 T + 20699214147 T^{2} - 2059076861838640 T^{3} + \)\(16\!\cdots\!18\)\( T^{4} - \)\(11\!\cdots\!28\)\( T^{5} + \)\(16\!\cdots\!18\)\( p^{5} T^{6} - 2059076861838640 p^{10} T^{7} + 20699214147 p^{15} T^{8} - 145894 p^{20} T^{9} + p^{25} T^{10} \)
89$C_2 \wr S_5$ \( 1 - 188554 T + 34642576069 T^{2} - 3858430518761528 T^{3} + \)\(40\!\cdots\!82\)\( T^{4} - \)\(31\!\cdots\!44\)\( T^{5} + \)\(40\!\cdots\!82\)\( p^{5} T^{6} - 3858430518761528 p^{10} T^{7} + 34642576069 p^{15} T^{8} - 188554 p^{20} T^{9} + p^{25} T^{10} \)
97$C_2 \wr S_5$ \( 1 + 88146 T + 21402153597 T^{2} + 1217857393485816 T^{3} + \)\(29\!\cdots\!82\)\( T^{4} + \)\(17\!\cdots\!16\)\( T^{5} + \)\(29\!\cdots\!82\)\( p^{5} T^{6} + 1217857393485816 p^{10} T^{7} + 21402153597 p^{15} T^{8} + 88146 p^{20} T^{9} + p^{25} T^{10} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.68303207894274139084350573998, −5.66218778967776975219184745432, −5.50459383331174138363660490966, −5.33682623868949842028110751203, −5.19871357165099204775188754814, −4.93646220555092196888802000276, −4.81289676803178302247069072559, −4.54515854753738174453378038130, −4.30396408458670992657539385461, −3.85600240894373870738025854676, −3.69535927691362720837823028085, −3.61047060050575978784562411650, −3.39606664320655296219989868720, −3.21075401051951307698509459443, −3.00131583837429881954558577678, −2.54130234799171958191716627889, −2.17092900144961024919154122304, −2.07091003260562595982557923305, −1.93104514848348556822450746271, −1.75665894473032280656439790442, −1.40581319428643283251874407567, −0.895179071032358757109278635352, −0.63242666027610530723386839012, −0.60234019061133957939105333859, −0.25953265639030810536433321192, 0.25953265639030810536433321192, 0.60234019061133957939105333859, 0.63242666027610530723386839012, 0.895179071032358757109278635352, 1.40581319428643283251874407567, 1.75665894473032280656439790442, 1.93104514848348556822450746271, 2.07091003260562595982557923305, 2.17092900144961024919154122304, 2.54130234799171958191716627889, 3.00131583837429881954558577678, 3.21075401051951307698509459443, 3.39606664320655296219989868720, 3.61047060050575978784562411650, 3.69535927691362720837823028085, 3.85600240894373870738025854676, 4.30396408458670992657539385461, 4.54515854753738174453378038130, 4.81289676803178302247069072559, 4.93646220555092196888802000276, 5.19871357165099204775188754814, 5.33682623868949842028110751203, 5.50459383331174138363660490966, 5.66218778967776975219184745432, 5.68303207894274139084350573998

Graph of the $Z$-function along the critical line