Properties

Label 8-448e4-1.1-c5e4-0-0
Degree $8$
Conductor $40282095616$
Sign $1$
Analytic cond. $2.66535\times 10^{7}$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18·3-s + 30·5-s − 196·7-s + 24·9-s + 484·11-s − 686·13-s + 540·15-s − 1.70e3·17-s + 654·19-s − 3.52e3·21-s − 136·23-s − 4.14e3·25-s + 1.82e3·27-s − 3.81e3·29-s − 1.27e4·31-s + 8.71e3·33-s − 5.88e3·35-s − 820·37-s − 1.23e4·39-s + 2.23e4·41-s + 3.29e4·43-s + 720·45-s + 2.62e3·47-s + 2.40e4·49-s − 3.06e4·51-s − 2.29e4·53-s + 1.45e4·55-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.536·5-s − 1.51·7-s + 8/81·9-s + 1.20·11-s − 1.12·13-s + 0.619·15-s − 1.42·17-s + 0.415·19-s − 1.74·21-s − 0.0536·23-s − 1.32·25-s + 0.482·27-s − 0.841·29-s − 2.38·31-s + 1.39·33-s − 0.811·35-s − 0.0984·37-s − 1.29·39-s + 2.07·41-s + 2.71·43-s + 0.0530·45-s + 0.173·47-s + 10/7·49-s − 1.64·51-s − 1.12·53-s + 0.647·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2.66535\times 10^{7}\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 7^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(8.788341221\)
\(L(\frac12)\) \(\approx\) \(8.788341221\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 + p^{2} T )^{4} \)
good3$C_2 \wr S_4$ \( 1 - 2 p^{2} T + 100 p T^{2} - 6794 T^{3} + 36674 p T^{4} - 6794 p^{5} T^{5} + 100 p^{11} T^{6} - 2 p^{17} T^{7} + p^{20} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 6 p T + 5048 T^{2} - 54714 p T^{3} + 15115326 T^{4} - 54714 p^{6} T^{5} + 5048 p^{10} T^{6} - 6 p^{16} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 4 p^{2} T + 35716 p T^{2} - 125361508 T^{3} + 5940513410 p T^{4} - 125361508 p^{5} T^{5} + 35716 p^{11} T^{6} - 4 p^{17} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 686 T + 939616 T^{2} + 332883362 T^{3} + 381250220782 T^{4} + 332883362 p^{5} T^{5} + 939616 p^{10} T^{6} + 686 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 100 p T + 4053332 T^{2} + 4635385436 T^{3} + 6808010433046 T^{4} + 4635385436 p^{5} T^{5} + 4053332 p^{10} T^{6} + 100 p^{16} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 654 T + 456772 p T^{2} - 4543938678 T^{3} + 30706678793670 T^{4} - 4543938678 p^{5} T^{5} + 456772 p^{11} T^{6} - 654 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 136 T + 19332140 T^{2} - 2243776856 T^{3} + 168513510838342 T^{4} - 2243776856 p^{5} T^{5} + 19332140 p^{10} T^{6} + 136 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 3812 T + 41523524 T^{2} + 106843606508 T^{3} + 792790542815302 T^{4} + 106843606508 p^{5} T^{5} + 41523524 p^{10} T^{6} + 3812 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 12748 T + 152194300 T^{2} + 1128922691548 T^{3} + 7080232771764358 T^{4} + 1128922691548 p^{5} T^{5} + 152194300 p^{10} T^{6} + 12748 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 820 T + 184858372 T^{2} + 536841406780 T^{3} + 15633679169693158 T^{4} + 536841406780 p^{5} T^{5} + 184858372 p^{10} T^{6} + 820 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 22340 T + 554908100 T^{2} - 7280507858780 T^{3} + 99694632965739286 T^{4} - 7280507858780 p^{5} T^{5} + 554908100 p^{10} T^{6} - 22340 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 32924 T + 818981356 T^{2} - 14245943909276 T^{3} + 196093231806612118 T^{4} - 14245943909276 p^{5} T^{5} + 818981356 p^{10} T^{6} - 32924 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 2620 T + 2450596 p T^{2} + 1080976610612 T^{3} + 64745923045143814 T^{4} + 1080976610612 p^{5} T^{5} + 2450596 p^{11} T^{6} - 2620 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 22984 T + 564662540 T^{2} - 2922544439720 T^{3} - 7278111914405546 T^{4} - 2922544439720 p^{5} T^{5} + 564662540 p^{10} T^{6} + 22984 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 108158 T + 6400083164 T^{2} - 261743329260470 T^{3} + 8048849631881712454 T^{4} - 261743329260470 p^{5} T^{5} + 6400083164 p^{10} T^{6} - 108158 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 4258 T + 2046507016 T^{2} - 5581567233170 T^{3} + 1986485748117693310 T^{4} - 5581567233170 p^{5} T^{5} + 2046507016 p^{10} T^{6} + 4258 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 109496 T + 8083011868 T^{2} - 428334514975736 T^{3} + 18165633526997379286 T^{4} - 428334514975736 p^{5} T^{5} + 8083011868 p^{10} T^{6} - 109496 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 54600 T + 7266902108 T^{2} + 283566388988904 T^{3} + 19689135019852078374 T^{4} + 283566388988904 p^{5} T^{5} + 7266902108 p^{10} T^{6} + 54600 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 12384 T + 6341551564 T^{2} + 70039003302624 T^{3} + 17758389431251491846 T^{4} + 70039003302624 p^{5} T^{5} + 6341551564 p^{10} T^{6} + 12384 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 78184 T + 6844461052 T^{2} + 95864920847176 T^{3} + 9158714735370002374 T^{4} + 95864920847176 p^{5} T^{5} + 6844461052 p^{10} T^{6} + 78184 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 115582 T + 9983779676 T^{2} - 247067538146470 T^{3} + 13256962537696325734 T^{4} - 247067538146470 p^{5} T^{5} + 9983779676 p^{10} T^{6} - 115582 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 31560 T + 21995076956 T^{2} + 518247101700024 T^{3} + \)\(18\!\cdots\!26\)\( T^{4} + 518247101700024 p^{5} T^{5} + 21995076956 p^{10} T^{6} + 31560 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 41068 T + 9553962964 T^{2} + 160938872731052 T^{3} + 72701169611310572374 T^{4} + 160938872731052 p^{5} T^{5} + 9553962964 p^{10} T^{6} - 41068 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.24175907078307360106197826499, −6.85930728161197779703455718506, −6.85064128075560694617932683989, −6.46662751905444540522003604632, −6.25913692794056741154077015031, −5.94835189173454815807552128248, −5.55329624771796622913512841619, −5.51889833391418515002995387430, −5.47265540625846714416426116419, −4.83829244661495632816512904309, −4.37673130487054250933210425859, −4.28260748774100532653656515142, −4.00669748212604145906264059436, −3.76167195781133451213531618262, −3.50752497688558667960623513053, −3.15774376164352308704591329341, −2.92836274895404229594944139727, −2.35315084409597991929160981913, −2.32071434533119790629198710139, −2.23126850176488156308489751921, −1.79514350375430016278829633434, −1.38107287485903568329374768848, −0.69496106859172722761191912365, −0.49801373990905197626306861348, −0.45185191732689454884111043201, 0.45185191732689454884111043201, 0.49801373990905197626306861348, 0.69496106859172722761191912365, 1.38107287485903568329374768848, 1.79514350375430016278829633434, 2.23126850176488156308489751921, 2.32071434533119790629198710139, 2.35315084409597991929160981913, 2.92836274895404229594944139727, 3.15774376164352308704591329341, 3.50752497688558667960623513053, 3.76167195781133451213531618262, 4.00669748212604145906264059436, 4.28260748774100532653656515142, 4.37673130487054250933210425859, 4.83829244661495632816512904309, 5.47265540625846714416426116419, 5.51889833391418515002995387430, 5.55329624771796622913512841619, 5.94835189173454815807552128248, 6.25913692794056741154077015031, 6.46662751905444540522003604632, 6.85064128075560694617932683989, 6.85930728161197779703455718506, 7.24175907078307360106197826499

Graph of the $Z$-function along the critical line