Properties

Label 2-448-1.1-c5-0-52
Degree $2$
Conductor $448$
Sign $-1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.4·3-s − 21.4·5-s + 49·7-s + 173.·9-s − 647.·11-s + 787.·13-s − 438.·15-s − 1.93e3·17-s + 964.·19-s + 1.00e3·21-s + 1.49e3·23-s − 2.66e3·25-s − 1.41e3·27-s − 7.16e3·29-s + 2.22e3·31-s − 1.32e4·33-s − 1.05e3·35-s + 2.05e3·37-s + 1.60e4·39-s + 9.00e3·41-s + 2.60e3·43-s − 3.73e3·45-s − 2.22e4·47-s + 2.40e3·49-s − 3.95e4·51-s − 2.77e4·53-s + 1.39e4·55-s + ⋯
L(s)  = 1  + 1.30·3-s − 0.384·5-s + 0.377·7-s + 0.715·9-s − 1.61·11-s + 1.29·13-s − 0.503·15-s − 1.62·17-s + 0.613·19-s + 0.495·21-s + 0.588·23-s − 0.852·25-s − 0.372·27-s − 1.58·29-s + 0.415·31-s − 2.11·33-s − 0.145·35-s + 0.246·37-s + 1.69·39-s + 0.837·41-s + 0.214·43-s − 0.275·45-s − 1.46·47-s + 0.142·49-s − 2.12·51-s − 1.35·53-s + 0.620·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 49T \)
good3 \( 1 - 20.4T + 243T^{2} \)
5 \( 1 + 21.4T + 3.12e3T^{2} \)
11 \( 1 + 647.T + 1.61e5T^{2} \)
13 \( 1 - 787.T + 3.71e5T^{2} \)
17 \( 1 + 1.93e3T + 1.41e6T^{2} \)
19 \( 1 - 964.T + 2.47e6T^{2} \)
23 \( 1 - 1.49e3T + 6.43e6T^{2} \)
29 \( 1 + 7.16e3T + 2.05e7T^{2} \)
31 \( 1 - 2.22e3T + 2.86e7T^{2} \)
37 \( 1 - 2.05e3T + 6.93e7T^{2} \)
41 \( 1 - 9.00e3T + 1.15e8T^{2} \)
43 \( 1 - 2.60e3T + 1.47e8T^{2} \)
47 \( 1 + 2.22e4T + 2.29e8T^{2} \)
53 \( 1 + 2.77e4T + 4.18e8T^{2} \)
59 \( 1 + 4.38e4T + 7.14e8T^{2} \)
61 \( 1 + 3.14e4T + 8.44e8T^{2} \)
67 \( 1 - 5.41e3T + 1.35e9T^{2} \)
71 \( 1 - 4.87e4T + 1.80e9T^{2} \)
73 \( 1 + 7.55e3T + 2.07e9T^{2} \)
79 \( 1 - 4.33e4T + 3.07e9T^{2} \)
83 \( 1 + 7.18e4T + 3.93e9T^{2} \)
89 \( 1 - 1.13e3T + 5.58e9T^{2} \)
97 \( 1 - 1.35e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.583838549343828307305654377737, −8.823585522904323171392899580840, −8.003083378764929146865164086637, −7.53747911734611961576564283520, −6.09820340466253801895323243102, −4.83734545923323659645603526439, −3.71939547140765974438537540443, −2.78015990291136604824428568899, −1.75847346102821294150853831875, 0, 1.75847346102821294150853831875, 2.78015990291136604824428568899, 3.71939547140765974438537540443, 4.83734545923323659645603526439, 6.09820340466253801895323243102, 7.53747911734611961576564283520, 8.003083378764929146865164086637, 8.823585522904323171392899580840, 9.583838549343828307305654377737

Graph of the $Z$-function along the critical line