Properties

Label 2-448-1.1-c5-0-57
Degree $2$
Conductor $448$
Sign $-1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.0·3-s + 33.3·5-s − 49·7-s + 159.·9-s − 660.·11-s + 145.·13-s + 668.·15-s + 435.·17-s − 1.52e3·19-s − 982.·21-s − 206.·23-s − 2.01e3·25-s − 1.68e3·27-s + 2.03e3·29-s + 1.15e3·31-s − 1.32e4·33-s − 1.63e3·35-s − 6.75e3·37-s + 2.92e3·39-s − 1.53e4·41-s − 6.25e3·43-s + 5.29e3·45-s − 1.26e4·47-s + 2.40e3·49-s + 8.72e3·51-s − 1.08e4·53-s − 2.20e4·55-s + ⋯
L(s)  = 1  + 1.28·3-s + 0.596·5-s − 0.377·7-s + 0.654·9-s − 1.64·11-s + 0.239·13-s + 0.766·15-s + 0.365·17-s − 0.970·19-s − 0.486·21-s − 0.0814·23-s − 0.644·25-s − 0.444·27-s + 0.450·29-s + 0.215·31-s − 2.11·33-s − 0.225·35-s − 0.811·37-s + 0.307·39-s − 1.42·41-s − 0.516·43-s + 0.390·45-s − 0.832·47-s + 0.142·49-s + 0.469·51-s − 0.530·53-s − 0.980·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 49T \)
good3 \( 1 - 20.0T + 243T^{2} \)
5 \( 1 - 33.3T + 3.12e3T^{2} \)
11 \( 1 + 660.T + 1.61e5T^{2} \)
13 \( 1 - 145.T + 3.71e5T^{2} \)
17 \( 1 - 435.T + 1.41e6T^{2} \)
19 \( 1 + 1.52e3T + 2.47e6T^{2} \)
23 \( 1 + 206.T + 6.43e6T^{2} \)
29 \( 1 - 2.03e3T + 2.05e7T^{2} \)
31 \( 1 - 1.15e3T + 2.86e7T^{2} \)
37 \( 1 + 6.75e3T + 6.93e7T^{2} \)
41 \( 1 + 1.53e4T + 1.15e8T^{2} \)
43 \( 1 + 6.25e3T + 1.47e8T^{2} \)
47 \( 1 + 1.26e4T + 2.29e8T^{2} \)
53 \( 1 + 1.08e4T + 4.18e8T^{2} \)
59 \( 1 - 5.25e4T + 7.14e8T^{2} \)
61 \( 1 - 4.67e4T + 8.44e8T^{2} \)
67 \( 1 + 4.38e4T + 1.35e9T^{2} \)
71 \( 1 + 3.46e4T + 1.80e9T^{2} \)
73 \( 1 + 6.08e4T + 2.07e9T^{2} \)
79 \( 1 - 2.26e4T + 3.07e9T^{2} \)
83 \( 1 + 3.88e4T + 3.93e9T^{2} \)
89 \( 1 - 5.98e3T + 5.58e9T^{2} \)
97 \( 1 - 6.73e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01490794763774398046830199115, −8.730958984240987228674892061522, −8.253619335234944802828676320529, −7.27076225926904819156826996967, −6.06999873853488773201046201847, −5.02796578930623352348626099233, −3.61058168782483100650133293487, −2.69643381960503211420575835251, −1.86662823528514726484493683950, 0, 1.86662823528514726484493683950, 2.69643381960503211420575835251, 3.61058168782483100650133293487, 5.02796578930623352348626099233, 6.06999873853488773201046201847, 7.27076225926904819156826996967, 8.253619335234944802828676320529, 8.730958984240987228674892061522, 10.01490794763774398046830199115

Graph of the $Z$-function along the critical line