Properties

Label 8-448e4-1.1-c1e4-0-3
Degree $8$
Conductor $40282095616$
Sign $1$
Analytic cond. $163.764$
Root an. cond. $1.89137$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 3·9-s − 10·17-s + 11·25-s − 32·29-s − 10·37-s + 16·41-s + 6·45-s − 2·49-s − 2·53-s + 22·61-s − 30·73-s + 9·81-s − 20·85-s − 14·89-s + 48·97-s − 22·101-s − 6·109-s + 16·113-s − 5·121-s + 38·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + ⋯
L(s)  = 1  + 0.894·5-s + 9-s − 2.42·17-s + 11/5·25-s − 5.94·29-s − 1.64·37-s + 2.49·41-s + 0.894·45-s − 2/7·49-s − 0.274·53-s + 2.81·61-s − 3.51·73-s + 81-s − 2.16·85-s − 1.48·89-s + 4.87·97-s − 2.18·101-s − 0.574·109-s + 1.50·113-s − 0.454·121-s + 3.39·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.31·145-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(163.764\)
Root analytic conductor: \(1.89137\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.622242407\)
\(L(\frac12)\) \(\approx\) \(1.622242407\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good3$C_2$$\times$$C_2^2$ \( ( 1 - p T^{2} )^{2}( 1 + p T^{2} + p^{2} T^{4} ) \)
5$C_2^2$ \( ( 1 - T - 4 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 5 T^{2} - 96 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 5 T + 8 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^3$ \( 1 - 35 T^{2} + 864 T^{4} - 35 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 43 T^{2} + 1320 T^{4} - 43 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
31$C_2^2$$\times$$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )( 1 + 59 T^{2} + p^{2} T^{4} ) \)
37$C_2^2$ \( ( 1 + 5 T - 12 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 19 T^{2} - 1848 T^{4} - 19 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + T - 52 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 115 T^{2} + 9744 T^{4} - 115 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 11 T + 60 T^{2} - 11 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 109 T^{2} + p^{2} T^{4} )( 1 + 122 T^{2} + p^{2} T^{4} ) \)
71$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 15 T + 152 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 - 155 T^{2} + 17784 T^{4} - 155 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 + 118 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 7 T - 40 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87157349854703519668036689047, −7.62944754832085948498509454762, −7.44619092933150430715551064251, −7.42905379687482957983230238156, −6.89775318776566433154205662380, −6.88255093177831673342426379696, −6.70854701317858839821165384533, −6.35483066505742571145785652903, −5.85868034271099397450013119908, −5.75083472431591313032915091470, −5.61128676605861189345793907248, −5.40044168577497510452821801160, −4.85983797560327033523500560990, −4.63224995481837020911237578452, −4.55303842784167273196598710644, −4.00968015610822571681707353223, −3.86031676145140149729509640890, −3.57133345901698184193825708254, −3.28332726545800663096597365968, −2.63240326008029503075519965577, −2.24539711565485849727439402070, −2.21075366775886574506629923410, −1.56004751391240996199052382506, −1.55436286452054426289403976863, −0.42684712419728731085954410879, 0.42684712419728731085954410879, 1.55436286452054426289403976863, 1.56004751391240996199052382506, 2.21075366775886574506629923410, 2.24539711565485849727439402070, 2.63240326008029503075519965577, 3.28332726545800663096597365968, 3.57133345901698184193825708254, 3.86031676145140149729509640890, 4.00968015610822571681707353223, 4.55303842784167273196598710644, 4.63224995481837020911237578452, 4.85983797560327033523500560990, 5.40044168577497510452821801160, 5.61128676605861189345793907248, 5.75083472431591313032915091470, 5.85868034271099397450013119908, 6.35483066505742571145785652903, 6.70854701317858839821165384533, 6.88255093177831673342426379696, 6.89775318776566433154205662380, 7.42905379687482957983230238156, 7.44619092933150430715551064251, 7.62944754832085948498509454762, 7.87157349854703519668036689047

Graph of the $Z$-function along the critical line