Properties

Degree $2$
Conductor $4410$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 10-s + 0.585·11-s + 6.82·13-s + 16-s − 0.585·17-s − 0.828·19-s + 20-s − 0.585·22-s + 7.65·23-s + 25-s − 6.82·26-s + 2.58·29-s + 4.58·31-s − 32-s + 0.585·34-s − 0.585·37-s + 0.828·38-s − 40-s − 7.65·41-s + 7.07·43-s + 0.585·44-s − 7.65·46-s − 5.41·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s + 0.176·11-s + 1.89·13-s + 0.250·16-s − 0.142·17-s − 0.190·19-s + 0.223·20-s − 0.124·22-s + 1.59·23-s + 0.200·25-s − 1.33·26-s + 0.480·29-s + 0.823·31-s − 0.176·32-s + 0.100·34-s − 0.0963·37-s + 0.134·38-s − 0.158·40-s − 1.19·41-s + 1.07·43-s + 0.0883·44-s − 1.12·46-s − 0.789·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4410\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{4410} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.794271247\)
\(L(\frac12)\) \(\approx\) \(1.794271247\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 - 0.585T + 11T^{2} \)
13 \( 1 - 6.82T + 13T^{2} \)
17 \( 1 + 0.585T + 17T^{2} \)
19 \( 1 + 0.828T + 19T^{2} \)
23 \( 1 - 7.65T + 23T^{2} \)
29 \( 1 - 2.58T + 29T^{2} \)
31 \( 1 - 4.58T + 31T^{2} \)
37 \( 1 + 0.585T + 37T^{2} \)
41 \( 1 + 7.65T + 41T^{2} \)
43 \( 1 - 7.07T + 43T^{2} \)
47 \( 1 + 5.41T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 + 4.82T + 59T^{2} \)
61 \( 1 - 9.65T + 61T^{2} \)
67 \( 1 + 13.8T + 67T^{2} \)
71 \( 1 - 6.48T + 71T^{2} \)
73 \( 1 - 7.17T + 73T^{2} \)
79 \( 1 - 2.34T + 79T^{2} \)
83 \( 1 - 16.4T + 83T^{2} \)
89 \( 1 - 2.48T + 89T^{2} \)
97 \( 1 + 2.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.438068326580670186621370028747, −7.85159449087238944330398236164, −6.65940982850292086499004836608, −6.50217067955517898685784948115, −5.56799639350381459035735972316, −4.67916414015477345829011530365, −3.59694594482980948871667656611, −2.85505538044914591947158847584, −1.67246948067143710738182084046, −0.903442774851921596863683142611, 0.903442774851921596863683142611, 1.67246948067143710738182084046, 2.85505538044914591947158847584, 3.59694594482980948871667656611, 4.67916414015477345829011530365, 5.56799639350381459035735972316, 6.50217067955517898685784948115, 6.65940982850292086499004836608, 7.85159449087238944330398236164, 8.438068326580670186621370028747

Graph of the $Z$-function along the critical line