Properties

Label 16-21e16-1.1-c6e8-0-1
Degree $16$
Conductor $1.431\times 10^{21}$
Sign $1$
Analytic cond. $1.12240\times 10^{16}$
Root an. cond. $10.0724$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·2-s − 33·4-s + 1.02e3·8-s − 2.14e3·11-s − 1.14e4·16-s + 2.14e4·22-s − 3.04e4·23-s + 4.02e4·25-s − 3.25e4·29-s + 6.37e4·32-s + 9.13e4·37-s − 4.45e5·43-s + 7.06e4·44-s + 3.04e5·46-s − 4.02e5·50-s − 2.60e4·53-s + 3.25e5·58-s + 2.24e5·64-s − 7.68e5·67-s − 2.25e5·71-s − 9.13e5·74-s + 1.11e6·79-s + 4.45e6·86-s − 2.19e6·88-s + 1.00e6·92-s − 1.32e6·100-s + 2.60e5·106-s + ⋯
L(s)  = 1  − 5/4·2-s − 0.515·4-s + 2.00·8-s − 1.60·11-s − 2.78·16-s + 2.00·22-s − 2.50·23-s + 2.57·25-s − 1.33·29-s + 1.94·32-s + 1.80·37-s − 5.60·43-s + 0.829·44-s + 3.12·46-s − 3.21·50-s − 0.175·53-s + 1.66·58-s + 0.858·64-s − 2.55·67-s − 0.630·71-s − 2.25·74-s + 2.26·79-s + 7.00·86-s − 3.22·88-s + 1.29·92-s − 1.32·100-s + 0.218·106-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(7-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+3)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{16} \cdot 7^{16}\)
Sign: $1$
Analytic conductor: \(1.12240\times 10^{16}\)
Root analytic conductor: \(10.0724\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{16} \cdot 7^{16} ,\ ( \ : [3]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.002337821503\)
\(L(\frac12)\) \(\approx\) \(0.002337821503\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( ( 1 + 5 T + 27 p T^{2} + 23 p T^{3} + 265 p^{4} T^{4} + 23 p^{7} T^{5} + 27 p^{13} T^{6} + 5 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
5 \( 1 - 40226 T^{2} + 1130825449 T^{4} - 945309374954 p^{2} T^{6} + 685993727134996 p^{4} T^{8} - 945309374954 p^{14} T^{10} + 1130825449 p^{24} T^{12} - 40226 p^{36} T^{14} + p^{48} T^{16} \)
11 \( ( 1 + 1070 T + 6822033 T^{2} + 5373825550 T^{3} + 17953528514164 T^{4} + 5373825550 p^{6} T^{5} + 6822033 p^{12} T^{6} + 1070 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
13 \( 1 - 16298786 T^{2} + 111852524426401 T^{4} - 37539779661680550026 p T^{6} + \)\(20\!\cdots\!88\)\( T^{8} - 37539779661680550026 p^{13} T^{10} + 111852524426401 p^{24} T^{12} - 16298786 p^{36} T^{14} + p^{48} T^{16} \)
17 \( 1 - 23889824 T^{2} + 122207207828156 p T^{4} - \)\(38\!\cdots\!92\)\( T^{6} + \)\(17\!\cdots\!42\)\( T^{8} - \)\(38\!\cdots\!92\)\( p^{12} T^{10} + 122207207828156 p^{25} T^{12} - 23889824 p^{36} T^{14} + p^{48} T^{16} \)
19 \( 1 - 120011066 T^{2} + 4558960827908065 T^{4} + \)\(74\!\cdots\!14\)\( p T^{6} - \)\(16\!\cdots\!56\)\( T^{8} + \)\(74\!\cdots\!14\)\( p^{13} T^{10} + 4558960827908065 p^{24} T^{12} - 120011066 p^{36} T^{14} + p^{48} T^{16} \)
23 \( ( 1 + 15224 T + 303174876 T^{2} + 3933308321128 T^{3} + 71062389247076086 T^{4} + 3933308321128 p^{6} T^{5} + 303174876 p^{12} T^{6} + 15224 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
29 \( ( 1 + 16262 T + 1936712745 T^{2} + 19588912728706 T^{3} + 1557131395176891808 T^{4} + 19588912728706 p^{6} T^{5} + 1936712745 p^{12} T^{6} + 16262 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
31 \( 1 - 3071909540 T^{2} + 5609111825159464114 T^{4} - \)\(68\!\cdots\!20\)\( T^{6} + \)\(68\!\cdots\!91\)\( T^{8} - \)\(68\!\cdots\!20\)\( p^{12} T^{10} + 5609111825159464114 p^{24} T^{12} - 3071909540 p^{36} T^{14} + p^{48} T^{16} \)
37 \( ( 1 - 45670 T + 7173593881 T^{2} - 327580206713990 T^{3} + 24148714940087622596 T^{4} - 327580206713990 p^{6} T^{5} + 7173593881 p^{12} T^{6} - 45670 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
41 \( 1 - 26005847576 T^{2} + \)\(34\!\cdots\!60\)\( T^{4} - \)\(28\!\cdots\!64\)\( T^{6} + \)\(15\!\cdots\!14\)\( T^{8} - \)\(28\!\cdots\!64\)\( p^{12} T^{10} + \)\(34\!\cdots\!60\)\( p^{24} T^{12} - 26005847576 p^{36} T^{14} + p^{48} T^{16} \)
43 \( ( 1 + 222830 T + 23708395369 T^{2} + 1380667882433470 T^{3} + 73296626267097035876 T^{4} + 1380667882433470 p^{6} T^{5} + 23708395369 p^{12} T^{6} + 222830 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
47 \( 1 - 59192143520 T^{2} + \)\(16\!\cdots\!20\)\( T^{4} - \)\(27\!\cdots\!64\)\( T^{6} + \)\(34\!\cdots\!70\)\( T^{8} - \)\(27\!\cdots\!64\)\( p^{12} T^{10} + \)\(16\!\cdots\!20\)\( p^{24} T^{12} - 59192143520 p^{36} T^{14} + p^{48} T^{16} \)
53 \( ( 1 + 13034 T + 38080896873 T^{2} + 63769766876950 T^{3} + \)\(11\!\cdots\!52\)\( T^{4} + 63769766876950 p^{6} T^{5} + 38080896873 p^{12} T^{6} + 13034 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
59 \( 1 - 34928672738 T^{2} + \)\(31\!\cdots\!25\)\( T^{4} - \)\(27\!\cdots\!74\)\( T^{6} + \)\(40\!\cdots\!28\)\( T^{8} - \)\(27\!\cdots\!74\)\( p^{12} T^{10} + \)\(31\!\cdots\!25\)\( p^{24} T^{12} - 34928672738 p^{36} T^{14} + p^{48} T^{16} \)
61 \( 1 - 353197951976 T^{2} + \)\(57\!\cdots\!92\)\( T^{4} - \)\(55\!\cdots\!08\)\( T^{6} + \)\(34\!\cdots\!42\)\( T^{8} - \)\(55\!\cdots\!08\)\( p^{12} T^{10} + \)\(57\!\cdots\!92\)\( p^{24} T^{12} - 353197951976 p^{36} T^{14} + p^{48} T^{16} \)
67 \( ( 1 + 384094 T + 316936300861 T^{2} + 89519136577479610 T^{3} + \)\(41\!\cdots\!76\)\( T^{4} + 89519136577479610 p^{6} T^{5} + 316936300861 p^{12} T^{6} + 384094 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
71 \( ( 1 + 112844 T + 324448495296 T^{2} - 1073384954931548 T^{3} + \)\(47\!\cdots\!38\)\( T^{4} - 1073384954931548 p^{6} T^{5} + 324448495296 p^{12} T^{6} + 112844 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
73 \( 1 - 979051001426 T^{2} + \)\(44\!\cdots\!89\)\( T^{4} - \)\(12\!\cdots\!38\)\( T^{6} + \)\(22\!\cdots\!56\)\( T^{8} - \)\(12\!\cdots\!38\)\( p^{12} T^{10} + \)\(44\!\cdots\!89\)\( p^{24} T^{12} - 979051001426 p^{36} T^{14} + p^{48} T^{16} \)
79 \( ( 1 - 559592 T + 506004632830 T^{2} - 161020277829667928 T^{3} + \)\(12\!\cdots\!43\)\( T^{4} - 161020277829667928 p^{6} T^{5} + 506004632830 p^{12} T^{6} - 559592 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
83 \( 1 - 577456669706 T^{2} + \)\(27\!\cdots\!89\)\( T^{4} - \)\(12\!\cdots\!18\)\( T^{6} + \)\(42\!\cdots\!16\)\( T^{8} - \)\(12\!\cdots\!18\)\( p^{12} T^{10} + \)\(27\!\cdots\!89\)\( p^{24} T^{12} - 577456669706 p^{36} T^{14} + p^{48} T^{16} \)
89 \( 1 - 3692886607664 T^{2} + \)\(60\!\cdots\!64\)\( T^{4} - \)\(58\!\cdots\!12\)\( T^{6} + \)\(36\!\cdots\!06\)\( T^{8} - \)\(58\!\cdots\!12\)\( p^{12} T^{10} + \)\(60\!\cdots\!64\)\( p^{24} T^{12} - 3692886607664 p^{36} T^{14} + p^{48} T^{16} \)
97 \( 1 - 4315064900690 T^{2} + \)\(91\!\cdots\!41\)\( T^{4} - \)\(12\!\cdots\!58\)\( T^{6} + \)\(12\!\cdots\!60\)\( T^{8} - \)\(12\!\cdots\!58\)\( p^{12} T^{10} + \)\(91\!\cdots\!41\)\( p^{24} T^{12} - 4315064900690 p^{36} T^{14} + p^{48} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.85653135224836531059358550750, −3.72607130372666437187579326886, −3.67751393747086828393537507630, −3.64128844788389571492449407881, −3.07236362080416272995893717224, −2.95471828625692777197821580448, −2.93508333677536815954268197293, −2.92134824106961500338089522162, −2.61609326933337475897445956593, −2.48065595633735548272040943308, −2.45409835118049573935367522791, −2.04222945828047954588374468268, −2.00175247726547330687769730926, −1.91533606182803200528924018756, −1.73991201722493053836979266337, −1.52388816523098548411892061100, −1.37891429255046378019131537851, −1.21521547605773007440159677235, −1.02393295537140872069217436584, −0.871647903772042632494551239891, −0.861038837306475752056865618136, −0.30450378387122134621053266001, −0.26219142950760228094772109147, −0.18695980802146359532578176909, −0.01556310836664396114042772613, 0.01556310836664396114042772613, 0.18695980802146359532578176909, 0.26219142950760228094772109147, 0.30450378387122134621053266001, 0.861038837306475752056865618136, 0.871647903772042632494551239891, 1.02393295537140872069217436584, 1.21521547605773007440159677235, 1.37891429255046378019131537851, 1.52388816523098548411892061100, 1.73991201722493053836979266337, 1.91533606182803200528924018756, 2.00175247726547330687769730926, 2.04222945828047954588374468268, 2.45409835118049573935367522791, 2.48065595633735548272040943308, 2.61609326933337475897445956593, 2.92134824106961500338089522162, 2.93508333677536815954268197293, 2.95471828625692777197821580448, 3.07236362080416272995893717224, 3.64128844788389571492449407881, 3.67751393747086828393537507630, 3.72607130372666437187579326886, 3.85653135224836531059358550750

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.