Properties

Label 2-21e2-1.1-c5-0-51
Degree $2$
Conductor $441$
Sign $-1$
Analytic cond. $70.7292$
Root an. cond. $8.41006$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.2·2-s + 72.5·4-s + 23.7·5-s − 414.·8-s − 242.·10-s − 465.·11-s + 1.01e3·13-s + 1.91e3·16-s + 561.·17-s + 1.38e3·19-s + 1.72e3·20-s + 4.75e3·22-s − 4.11e3·23-s − 2.56e3·25-s − 1.04e4·26-s + 2.38e3·29-s − 2.95e3·31-s − 6.32e3·32-s − 5.74e3·34-s − 9.90e3·37-s − 1.41e4·38-s − 9.84e3·40-s − 4.47e3·41-s + 5.18e3·43-s − 3.37e4·44-s + 4.20e4·46-s − 3.12e3·47-s + ⋯
L(s)  = 1  − 1.80·2-s + 2.26·4-s + 0.424·5-s − 2.28·8-s − 0.767·10-s − 1.16·11-s + 1.67·13-s + 1.87·16-s + 0.471·17-s + 0.881·19-s + 0.963·20-s + 2.09·22-s − 1.62·23-s − 0.819·25-s − 3.02·26-s + 0.525·29-s − 0.551·31-s − 1.09·32-s − 0.852·34-s − 1.18·37-s − 1.59·38-s − 0.972·40-s − 0.415·41-s + 0.427·43-s − 2.62·44-s + 2.93·46-s − 0.206·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(70.7292\)
Root analytic conductor: \(8.41006\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 441,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 10.2T + 32T^{2} \)
5 \( 1 - 23.7T + 3.12e3T^{2} \)
11 \( 1 + 465.T + 1.61e5T^{2} \)
13 \( 1 - 1.01e3T + 3.71e5T^{2} \)
17 \( 1 - 561.T + 1.41e6T^{2} \)
19 \( 1 - 1.38e3T + 2.47e6T^{2} \)
23 \( 1 + 4.11e3T + 6.43e6T^{2} \)
29 \( 1 - 2.38e3T + 2.05e7T^{2} \)
31 \( 1 + 2.95e3T + 2.86e7T^{2} \)
37 \( 1 + 9.90e3T + 6.93e7T^{2} \)
41 \( 1 + 4.47e3T + 1.15e8T^{2} \)
43 \( 1 - 5.18e3T + 1.47e8T^{2} \)
47 \( 1 + 3.12e3T + 2.29e8T^{2} \)
53 \( 1 + 1.14e3T + 4.18e8T^{2} \)
59 \( 1 - 2.74e4T + 7.14e8T^{2} \)
61 \( 1 - 2.11e4T + 8.44e8T^{2} \)
67 \( 1 + 5.55e4T + 1.35e9T^{2} \)
71 \( 1 - 6.07e3T + 1.80e9T^{2} \)
73 \( 1 - 1.67e4T + 2.07e9T^{2} \)
79 \( 1 + 4.84e3T + 3.07e9T^{2} \)
83 \( 1 - 6.01e4T + 3.93e9T^{2} \)
89 \( 1 + 6.24e4T + 5.58e9T^{2} \)
97 \( 1 - 6.36e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.967312020228388171208725486010, −8.913264919404098623274643597889, −8.168418243588826338801362631954, −7.50895927152370996995303921914, −6.31797236858046959301266317514, −5.52798761132708362481698385447, −3.51955514777056648256563898116, −2.20264704818747660435119816144, −1.23082071052071592121052213364, 0, 1.23082071052071592121052213364, 2.20264704818747660435119816144, 3.51955514777056648256563898116, 5.52798761132708362481698385447, 6.31797236858046959301266317514, 7.50895927152370996995303921914, 8.168418243588826338801362631954, 8.913264919404098623274643597889, 9.967312020228388171208725486010

Graph of the $Z$-function along the critical line