Properties

Label 2-21e2-1.1-c5-0-75
Degree $2$
Conductor $441$
Sign $-1$
Analytic cond. $70.7292$
Root an. cond. $8.41006$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.38·2-s + 56.1·4-s − 71.7·5-s + 226.·8-s − 673.·10-s + 560.·11-s − 533.·13-s + 333.·16-s + 1.00e3·17-s − 1.36e3·19-s − 4.02e3·20-s + 5.26e3·22-s − 3.22e3·23-s + 2.02e3·25-s − 5.00e3·26-s + 753.·29-s − 8.20e3·31-s − 4.12e3·32-s + 9.44e3·34-s − 2.80e3·37-s − 1.28e4·38-s − 1.62e4·40-s + 245.·41-s − 1.75e4·43-s + 3.14e4·44-s − 3.03e4·46-s − 1.63e4·47-s + ⋯
L(s)  = 1  + 1.65·2-s + 1.75·4-s − 1.28·5-s + 1.25·8-s − 2.12·10-s + 1.39·11-s − 0.875·13-s + 0.325·16-s + 0.844·17-s − 0.869·19-s − 2.25·20-s + 2.31·22-s − 1.27·23-s + 0.646·25-s − 1.45·26-s + 0.166·29-s − 1.53·31-s − 0.712·32-s + 1.40·34-s − 0.337·37-s − 1.44·38-s − 1.60·40-s + 0.0228·41-s − 1.44·43-s + 2.45·44-s − 2.11·46-s − 1.07·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(70.7292\)
Root analytic conductor: \(8.41006\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 441,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 9.38T + 32T^{2} \)
5 \( 1 + 71.7T + 3.12e3T^{2} \)
11 \( 1 - 560.T + 1.61e5T^{2} \)
13 \( 1 + 533.T + 3.71e5T^{2} \)
17 \( 1 - 1.00e3T + 1.41e6T^{2} \)
19 \( 1 + 1.36e3T + 2.47e6T^{2} \)
23 \( 1 + 3.22e3T + 6.43e6T^{2} \)
29 \( 1 - 753.T + 2.05e7T^{2} \)
31 \( 1 + 8.20e3T + 2.86e7T^{2} \)
37 \( 1 + 2.80e3T + 6.93e7T^{2} \)
41 \( 1 - 245.T + 1.15e8T^{2} \)
43 \( 1 + 1.75e4T + 1.47e8T^{2} \)
47 \( 1 + 1.63e4T + 2.29e8T^{2} \)
53 \( 1 - 2.96e4T + 4.18e8T^{2} \)
59 \( 1 + 1.03e4T + 7.14e8T^{2} \)
61 \( 1 + 954.T + 8.44e8T^{2} \)
67 \( 1 + 1.98e4T + 1.35e9T^{2} \)
71 \( 1 + 6.21e4T + 1.80e9T^{2} \)
73 \( 1 + 2.71e4T + 2.07e9T^{2} \)
79 \( 1 - 4.46e4T + 3.07e9T^{2} \)
83 \( 1 - 1.56e4T + 3.93e9T^{2} \)
89 \( 1 - 1.36e4T + 5.58e9T^{2} \)
97 \( 1 - 1.29e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13199842576144227096604135010, −8.823384873458009625849919547148, −7.66642919787712372484650821597, −6.87315311111943928906750493039, −5.92027529356180219567306530294, −4.75846786485297613865236781333, −3.95572636384637669361891774875, −3.36316645746080433214420206484, −1.87127008400953892077469303103, 0, 1.87127008400953892077469303103, 3.36316645746080433214420206484, 3.95572636384637669361891774875, 4.75846786485297613865236781333, 5.92027529356180219567306530294, 6.87315311111943928906750493039, 7.66642919787712372484650821597, 8.823384873458009625849919547148, 10.13199842576144227096604135010

Graph of the $Z$-function along the critical line