Properties

Label 4-21e4-1.1-c5e2-0-4
Degree $4$
Conductor $194481$
Sign $1$
Analytic cond. $5002.62$
Root an. cond. $8.41006$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 24·4-s − 38·5-s + 40·8-s + 76·10-s − 424·11-s + 924·13-s − 304·16-s − 2.34e3·17-s + 360·19-s + 912·20-s + 848·22-s + 12·23-s − 1.46e3·25-s − 1.84e3·26-s + 7.05e3·29-s − 3.54e3·31-s + 3.07e3·32-s + 4.69e3·34-s + 1.10e4·37-s − 720·38-s − 1.52e3·40-s + 3.50e3·41-s − 1.26e4·43-s + 1.01e4·44-s − 24·46-s − 2.29e4·47-s + ⋯
L(s)  = 1  − 0.353·2-s − 3/4·4-s − 0.679·5-s + 0.220·8-s + 0.240·10-s − 1.05·11-s + 1.51·13-s − 0.296·16-s − 1.96·17-s + 0.228·19-s + 0.509·20-s + 0.373·22-s + 0.00473·23-s − 0.469·25-s − 0.536·26-s + 1.55·29-s − 0.663·31-s + 0.530·32-s + 0.696·34-s + 1.33·37-s − 0.0808·38-s − 0.150·40-s + 0.325·41-s − 1.04·43-s + 0.792·44-s − 0.00167·46-s − 1.51·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 194481 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194481 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(194481\)    =    \(3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5002.62\)
Root analytic conductor: \(8.41006\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 194481,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$D_{4}$ \( 1 + p T + 7 p^{2} T^{2} + p^{6} T^{3} + p^{10} T^{4} \)
5$D_{4}$ \( 1 + 38 T + 2911 T^{2} + 38 p^{5} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 + 424 T + 347473 T^{2} + 424 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 - 924 T + 927022 T^{2} - 924 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 + 138 p T + 3570955 T^{2} + 138 p^{6} T^{3} + p^{10} T^{4} \)
19$D_{4}$ \( 1 - 360 T + 2145625 T^{2} - 360 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 - 12 T + 12696565 T^{2} - 12 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 - 7052 T + 35324974 T^{2} - 7052 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 + 3548 T + 41490053 T^{2} + 3548 p^{5} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 - 11090 T + 146343239 T^{2} - 11090 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 - 3500 T + 206898214 T^{2} - 3500 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 + 12680 T + 267378054 T^{2} + 12680 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 + 22956 T + 491525173 T^{2} + 22956 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 + 3042 T + 716414839 T^{2} + 3042 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 + 65808 T + 2502089257 T^{2} + 65808 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 - 42486 T + 1501996159 T^{2} - 42486 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 - 42312 T + 3116577793 T^{2} - 42312 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 - 2208 T + 3433192846 T^{2} - 2208 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 - 50506 T + 2773040987 T^{2} - 50506 p^{5} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 - 9004 T + 5176592589 T^{2} - 9004 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 + 104328 T + 9837878230 T^{2} + 104328 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 + 26666 T + 8107102555 T^{2} + 26666 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 + 2156 p T + 28107307478 T^{2} + 2156 p^{6} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.871974212449597888774573546787, −9.705662632351827442019547393236, −9.117510009041766091909472323992, −8.617735922307909254995976836791, −8.270940548037596639970963281195, −8.110474788486509450515575013937, −7.46938885645794519470558625415, −6.67454438338104574850474743237, −6.51839702427937772178949973385, −5.91389654159222010774218836755, −5.06284375215190085020613844987, −4.84852561309766439778571972575, −4.03514249315454161394072454754, −3.96758318358620446340962101418, −2.98507747463386596521168578082, −2.53007199407978577353323680086, −1.66298918993720222248894606458, −0.918046502359989220234972933144, 0, 0, 0.918046502359989220234972933144, 1.66298918993720222248894606458, 2.53007199407978577353323680086, 2.98507747463386596521168578082, 3.96758318358620446340962101418, 4.03514249315454161394072454754, 4.84852561309766439778571972575, 5.06284375215190085020613844987, 5.91389654159222010774218836755, 6.51839702427937772178949973385, 6.67454438338104574850474743237, 7.46938885645794519470558625415, 8.110474788486509450515575013937, 8.270940548037596639970963281195, 8.617735922307909254995976836791, 9.117510009041766091909472323992, 9.705662632351827442019547393236, 9.871974212449597888774573546787

Graph of the $Z$-function along the critical line