Properties

Label 2-21e2-1.1-c5-0-25
Degree $2$
Conductor $441$
Sign $1$
Analytic cond. $70.7292$
Root an. cond. $8.41006$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.0·2-s + 68.1·4-s − 70.3·5-s − 362.·8-s + 704.·10-s + 731.·11-s + 899.·13-s + 1.44e3·16-s + 1.39e3·17-s − 190.·19-s − 4.79e3·20-s − 7.32e3·22-s − 42.9·23-s + 1.82e3·25-s − 9.00e3·26-s + 7.74e3·29-s + 1.17e3·31-s − 2.85e3·32-s − 1.39e4·34-s + 9.28e3·37-s + 1.90e3·38-s + 2.54e4·40-s − 1.34e4·41-s + 6.03e3·43-s + 4.98e4·44-s + 430.·46-s + 3.24e3·47-s + ⋯
L(s)  = 1  − 1.76·2-s + 2.13·4-s − 1.25·5-s − 2.00·8-s + 2.22·10-s + 1.82·11-s + 1.47·13-s + 1.40·16-s + 1.16·17-s − 0.120·19-s − 2.68·20-s − 3.22·22-s − 0.0169·23-s + 0.583·25-s − 2.61·26-s + 1.71·29-s + 0.220·31-s − 0.492·32-s − 2.06·34-s + 1.11·37-s + 0.213·38-s + 2.51·40-s − 1.24·41-s + 0.497·43-s + 3.88·44-s + 0.0299·46-s + 0.214·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(70.7292\)
Root analytic conductor: \(8.41006\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9323818838\)
\(L(\frac12)\) \(\approx\) \(0.9323818838\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 10.0T + 32T^{2} \)
5 \( 1 + 70.3T + 3.12e3T^{2} \)
11 \( 1 - 731.T + 1.61e5T^{2} \)
13 \( 1 - 899.T + 3.71e5T^{2} \)
17 \( 1 - 1.39e3T + 1.41e6T^{2} \)
19 \( 1 + 190.T + 2.47e6T^{2} \)
23 \( 1 + 42.9T + 6.43e6T^{2} \)
29 \( 1 - 7.74e3T + 2.05e7T^{2} \)
31 \( 1 - 1.17e3T + 2.86e7T^{2} \)
37 \( 1 - 9.28e3T + 6.93e7T^{2} \)
41 \( 1 + 1.34e4T + 1.15e8T^{2} \)
43 \( 1 - 6.03e3T + 1.47e8T^{2} \)
47 \( 1 - 3.24e3T + 2.29e8T^{2} \)
53 \( 1 + 2.56e4T + 4.18e8T^{2} \)
59 \( 1 - 2.64e4T + 7.14e8T^{2} \)
61 \( 1 + 6.43e3T + 8.44e8T^{2} \)
67 \( 1 + 2.38e4T + 1.35e9T^{2} \)
71 \( 1 - 4.46e4T + 1.80e9T^{2} \)
73 \( 1 + 3.96e4T + 2.07e9T^{2} \)
79 \( 1 - 2.31e4T + 3.07e9T^{2} \)
83 \( 1 - 1.72e4T + 3.93e9T^{2} \)
89 \( 1 + 4.99e4T + 5.58e9T^{2} \)
97 \( 1 + 1.68e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18025393270499152350602795214, −9.250582103705907594734114610991, −8.453172087300750684657673561489, −7.953616993154401340364797231695, −6.87652977902913361024642602576, −6.19048464062833239169087432654, −4.17611291045419306133614161158, −3.21519642319761477829202733349, −1.39031295884614459618954061233, −0.75530530917433973799639384177, 0.75530530917433973799639384177, 1.39031295884614459618954061233, 3.21519642319761477829202733349, 4.17611291045419306133614161158, 6.19048464062833239169087432654, 6.87652977902913361024642602576, 7.953616993154401340364797231695, 8.453172087300750684657673561489, 9.250582103705907594734114610991, 10.18025393270499152350602795214

Graph of the $Z$-function along the critical line