# Properties

 Degree $2$ Conductor $441$ Sign $1$ Motivic weight $3$ Primitive yes Self-dual yes Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 − 5.39·2-s + 21.1·4-s − 15.5·5-s − 71.0·8-s + 84.1·10-s − 31.9·11-s − 72.5·13-s + 214.·16-s + 29.0·17-s − 108.·19-s − 329.·20-s + 172.·22-s + 55.2·23-s + 117.·25-s + 391.·26-s − 17.7·29-s − 56.1·31-s − 589.·32-s − 156.·34-s − 295.·37-s + 587.·38-s + 1.10e3·40-s − 238.·41-s + 16.8·43-s − 676.·44-s − 298.·46-s − 511.·47-s + ⋯
 L(s)  = 1 − 1.90·2-s + 2.64·4-s − 1.39·5-s − 3.14·8-s + 2.65·10-s − 0.876·11-s − 1.54·13-s + 3.35·16-s + 0.414·17-s − 1.31·19-s − 3.68·20-s + 1.67·22-s + 0.501·23-s + 0.941·25-s + 2.95·26-s − 0.113·29-s − 0.325·31-s − 3.25·32-s − 0.790·34-s − 1.31·37-s + 2.50·38-s + 4.37·40-s − 0.908·41-s + 0.0596·43-s − 2.31·44-s − 0.956·46-s − 1.58·47-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$441$$    =    $$3^{2} \cdot 7^{2}$$ Sign: $1$ Motivic weight: $$3$$ Character: $\chi_{441} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(2,\ 441,\ (\ :3/2),\ 1)$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$0.1517023326$$ $$L(\frac12)$$ $$\approx$$ $$0.1517023326$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
7 $$1$$
good2 $$1 + 5.39T + 8T^{2}$$
5 $$1 + 15.5T + 125T^{2}$$
11 $$1 + 31.9T + 1.33e3T^{2}$$
13 $$1 + 72.5T + 2.19e3T^{2}$$
17 $$1 - 29.0T + 4.91e3T^{2}$$
19 $$1 + 108.T + 6.85e3T^{2}$$
23 $$1 - 55.2T + 1.21e4T^{2}$$
29 $$1 + 17.7T + 2.43e4T^{2}$$
31 $$1 + 56.1T + 2.97e4T^{2}$$
37 $$1 + 295.T + 5.06e4T^{2}$$
41 $$1 + 238.T + 6.89e4T^{2}$$
43 $$1 - 16.8T + 7.95e4T^{2}$$
47 $$1 + 511.T + 1.03e5T^{2}$$
53 $$1 + 265.T + 1.48e5T^{2}$$
59 $$1 - 254.T + 2.05e5T^{2}$$
61 $$1 - 72.8T + 2.26e5T^{2}$$
67 $$1 + 506.T + 3.00e5T^{2}$$
71 $$1 - 827.T + 3.57e5T^{2}$$
73 $$1 - 372.T + 3.89e5T^{2}$$
79 $$1 - 1.02e3T + 4.93e5T^{2}$$
83 $$1 + 453.T + 5.71e5T^{2}$$
89 $$1 + 332.T + 7.04e5T^{2}$$
97 $$1 - 1.16e3T + 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−10.52952190155467216639937612072, −9.823589200248009720371697844744, −8.733004002651335090085062258055, −8.018645691964753225436586557837, −7.43536090154121925700151175931, −6.65143078347646140069836865049, −5.00086308435493138611326150767, −3.29723169708872725086202042218, −2.09357561229777712202459988683, −0.30800214825876499867451036834, 0.30800214825876499867451036834, 2.09357561229777712202459988683, 3.29723169708872725086202042218, 5.00086308435493138611326150767, 6.65143078347646140069836865049, 7.43536090154121925700151175931, 8.018645691964753225436586557837, 8.733004002651335090085062258055, 9.823589200248009720371697844744, 10.52952190155467216639937612072