L(s) = 1 | + 2.53·2-s + (0.592 + 1.62i)3-s + 4.41·4-s + (−0.439 + 0.761i)5-s + (1.50 + 4.12i)6-s + 6.10·8-s + (−2.29 + 1.92i)9-s + (−1.11 + 1.92i)10-s + (−1.93 − 3.35i)11-s + (2.61 + 7.18i)12-s + (−2.72 − 4.72i)13-s + (−1.50 − 0.264i)15-s + 6.63·16-s + (0.826 − 1.43i)17-s + (−5.81 + 4.88i)18-s + (1.20 + 2.08i)19-s + ⋯ |
L(s) = 1 | + 1.79·2-s + (0.342 + 0.939i)3-s + 2.20·4-s + (−0.196 + 0.340i)5-s + (0.612 + 1.68i)6-s + 2.15·8-s + (−0.766 + 0.642i)9-s + (−0.352 + 0.609i)10-s + (−0.584 − 1.01i)11-s + (0.754 + 2.07i)12-s + (−0.756 − 1.30i)13-s + (−0.387 − 0.0682i)15-s + 1.65·16-s + (0.200 − 0.347i)17-s + (−1.37 + 1.15i)18-s + (0.276 + 0.479i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.53856 + 1.48295i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.53856 + 1.48295i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.592 - 1.62i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.53T + 2T^{2} \) |
| 5 | \( 1 + (0.439 - 0.761i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.93 + 3.35i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.72 + 4.72i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.826 + 1.43i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.20 - 2.08i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.58 - 2.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.02 + 5.23i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.55T + 31T^{2} \) |
| 37 | \( 1 + (-2.27 - 3.94i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.592 + 1.02i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.0923 - 0.160i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 1.02T + 47T^{2} \) |
| 53 | \( 1 + (3.64 - 6.31i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 6.66T + 59T^{2} \) |
| 61 | \( 1 - 2.59T + 61T^{2} \) |
| 67 | \( 1 + 2.95T + 67T^{2} \) |
| 71 | \( 1 + 3.68T + 71T^{2} \) |
| 73 | \( 1 + (6.39 - 11.0i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 5.95T + 79T^{2} \) |
| 83 | \( 1 + (0.109 - 0.189i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.51 - 9.54i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.25 + 10.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36440303616484611332657064917, −10.60269139626965541680225281757, −9.815330816056983786568705291265, −8.242145537062966109060825866571, −7.44749340714635441326785572088, −5.95953337922919771716422695747, −5.36723169948720790610768949686, −4.41584685514155772557854079780, −3.20511444827342193602539892317, −2.81524444935790954324346269188,
1.94179657058725536028770949506, 2.87619731391955513877053745725, 4.31884687114070769975258971520, 5.01456496803002311951699913251, 6.32993511939749559004832764444, 6.97834343095587241663892024113, 7.82277933208719255010210178048, 9.087119401155107366364654254101, 10.43207467149162619054818324349, 11.68829049619080004196935970776