Properties

Label 4-21e4-1.1-c0e2-0-1
Degree $4$
Conductor $194481$
Sign $1$
Analytic cond. $0.0484385$
Root an. cond. $0.469135$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 25-s + 2·37-s − 4·43-s − 64-s − 2·67-s − 2·79-s − 100-s + 2·109-s + 121-s + 127-s + 131-s + 137-s + 139-s + 2·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s − 4·172-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 4-s − 25-s + 2·37-s − 4·43-s − 64-s − 2·67-s − 2·79-s − 100-s + 2·109-s + 121-s + 127-s + 131-s + 137-s + 139-s + 2·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s − 4·172-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 194481 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194481 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(194481\)    =    \(3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(0.0484385\)
Root analytic conductor: \(0.469135\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 194481,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8637825753\)
\(L(\frac12)\) \(\approx\) \(0.8637825753\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 - T + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$ \( ( 1 + T )^{4} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.49438970359066473817352013659, −11.33626292852082760209850477605, −10.67421072164152299370820510375, −10.26463573503206159132979439772, −9.698700915356889802984301980440, −9.609722008000977215470084698991, −8.591224729354076119968779401602, −8.549787287379746596472714024378, −7.78623839517945642711281070580, −7.45134713216296716150282292034, −6.87834066262158608905266997488, −6.52676742060248642637602831359, −5.90646054431188370473342496616, −5.63467893600201756616122681466, −4.61122384632602001394216453963, −4.48029662965645927091740316497, −3.39923831260526179066932882330, −3.05249497320041956745119721480, −2.16617937203495717213378069952, −1.60038641080423647027116313974, 1.60038641080423647027116313974, 2.16617937203495717213378069952, 3.05249497320041956745119721480, 3.39923831260526179066932882330, 4.48029662965645927091740316497, 4.61122384632602001394216453963, 5.63467893600201756616122681466, 5.90646054431188370473342496616, 6.52676742060248642637602831359, 6.87834066262158608905266997488, 7.45134713216296716150282292034, 7.78623839517945642711281070580, 8.549787287379746596472714024378, 8.591224729354076119968779401602, 9.609722008000977215470084698991, 9.698700915356889802984301980440, 10.26463573503206159132979439772, 10.67421072164152299370820510375, 11.33626292852082760209850477605, 11.49438970359066473817352013659

Graph of the $Z$-function along the critical line