Properties

Label 4-4400e2-1.1-c1e2-0-8
Degree $4$
Conductor $19360000$
Sign $1$
Analytic cond. $1234.41$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 7-s + 2·9-s − 2·11-s + 8·13-s + 17-s + 3·21-s − 3·23-s + 6·27-s − 5·29-s + 6·31-s + 6·33-s + 16·37-s − 24·39-s − 6·41-s + 12·43-s − 6·47-s − 2·49-s − 3·51-s + 3·53-s − 10·59-s − 11·61-s − 2·63-s − 16·67-s + 9·69-s + 6·71-s + 23·73-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.377·7-s + 2/3·9-s − 0.603·11-s + 2.21·13-s + 0.242·17-s + 0.654·21-s − 0.625·23-s + 1.15·27-s − 0.928·29-s + 1.07·31-s + 1.04·33-s + 2.63·37-s − 3.84·39-s − 0.937·41-s + 1.82·43-s − 0.875·47-s − 2/7·49-s − 0.420·51-s + 0.412·53-s − 1.30·59-s − 1.40·61-s − 0.251·63-s − 1.95·67-s + 1.08·69-s + 0.712·71-s + 2.69·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19360000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19360000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(19360000\)    =    \(2^{8} \cdot 5^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1234.41\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 19360000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.076323100\)
\(L(\frac12)\) \(\approx\) \(1.076323100\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$D_{4}$ \( 1 + p T + 7 T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + T + 3 T^{2} + p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 8 T + 37 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - T + 33 T^{2} - p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 3 T + 17 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 5 T + 63 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 - 16 T + 133 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 3 T + 47 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 10 T + 123 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 11 T + 121 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_4$ \( 1 - 6 T + 26 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 23 T + 277 T^{2} - 23 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 5 T + 153 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 27 T + 337 T^{2} - 27 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 25 T + 303 T^{2} + 25 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - T + 193 T^{2} - p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.302237848030734480471528634208, −8.234606243764627901304360733427, −7.76309679698595714328795093651, −7.60764956526130263936496252488, −6.73593281513579639663115836049, −6.64431581847945195977035837931, −6.10260919981987429322664830186, −6.03837181311176266923668753874, −5.76369652525753023369117691543, −5.42550118355934300981434878868, −4.85519427458334599103766229175, −4.54559173449320739024063198172, −4.06067590764984919338574741528, −3.71385126388493105999030899121, −2.96302526302193951353364385140, −2.96234805469970261260666499545, −2.09668634322180872240734963371, −1.46934169082693586067313946329, −0.862705828975303626260603419420, −0.44401108391812806689103824226, 0.44401108391812806689103824226, 0.862705828975303626260603419420, 1.46934169082693586067313946329, 2.09668634322180872240734963371, 2.96234805469970261260666499545, 2.96302526302193951353364385140, 3.71385126388493105999030899121, 4.06067590764984919338574741528, 4.54559173449320739024063198172, 4.85519427458334599103766229175, 5.42550118355934300981434878868, 5.76369652525753023369117691543, 6.03837181311176266923668753874, 6.10260919981987429322664830186, 6.64431581847945195977035837931, 6.73593281513579639663115836049, 7.60764956526130263936496252488, 7.76309679698595714328795093651, 8.234606243764627901304360733427, 8.302237848030734480471528634208

Graph of the $Z$-function along the critical line