| L(s) = 1 | + (0.395 − 0.395i)3-s + (−0.0577 + 2.23i)5-s + (2.57 − 2.57i)7-s + 2.68i·9-s + (−2.35 + 2.33i)11-s + (1.81 + 1.81i)13-s + (0.861 + 0.906i)15-s + (2.63 − 2.63i)17-s + 4.84·19-s − 2.03i·21-s + (−0.648 + 0.648i)23-s + (−4.99 − 0.258i)25-s + (2.24 + 2.24i)27-s − 9.19·29-s + 9.88·31-s + ⋯ |
| L(s) = 1 | + (0.228 − 0.228i)3-s + (−0.0258 + 0.999i)5-s + (0.973 − 0.973i)7-s + 0.895i·9-s + (−0.711 + 0.702i)11-s + (0.502 + 0.502i)13-s + (0.222 + 0.234i)15-s + (0.640 − 0.640i)17-s + 1.11·19-s − 0.444i·21-s + (−0.135 + 0.135i)23-s + (−0.998 − 0.0516i)25-s + (0.432 + 0.432i)27-s − 1.70·29-s + 1.77·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.498i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.867 - 0.498i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.57412 + 0.420001i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.57412 + 0.420001i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.0577 - 2.23i)T \) |
| 11 | \( 1 + (2.35 - 2.33i)T \) |
| good | 3 | \( 1 + (-0.395 + 0.395i)T - 3iT^{2} \) |
| 7 | \( 1 + (-2.57 + 2.57i)T - 7iT^{2} \) |
| 13 | \( 1 + (-1.81 - 1.81i)T + 13iT^{2} \) |
| 17 | \( 1 + (-2.63 + 2.63i)T - 17iT^{2} \) |
| 19 | \( 1 - 4.84T + 19T^{2} \) |
| 23 | \( 1 + (0.648 - 0.648i)T - 23iT^{2} \) |
| 29 | \( 1 + 9.19T + 29T^{2} \) |
| 31 | \( 1 - 9.88T + 31T^{2} \) |
| 37 | \( 1 + (-7.37 - 7.37i)T + 37iT^{2} \) |
| 41 | \( 1 + 5.37iT - 41T^{2} \) |
| 43 | \( 1 + (2.39 + 2.39i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.29 + 2.29i)T + 47iT^{2} \) |
| 53 | \( 1 + (3.34 - 3.34i)T - 53iT^{2} \) |
| 59 | \( 1 + 11.1iT - 59T^{2} \) |
| 61 | \( 1 + 6.46iT - 61T^{2} \) |
| 67 | \( 1 + (0.909 + 0.909i)T + 67iT^{2} \) |
| 71 | \( 1 + 5.95T + 71T^{2} \) |
| 73 | \( 1 + (1.99 + 1.99i)T + 73iT^{2} \) |
| 79 | \( 1 + 7.61T + 79T^{2} \) |
| 83 | \( 1 + (4.50 + 4.50i)T + 83iT^{2} \) |
| 89 | \( 1 + 2.85iT - 89T^{2} \) |
| 97 | \( 1 + (8.73 + 8.73i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18819378352829878139984475994, −10.36500243241305180841162738742, −9.653067531674222647831544302787, −7.988411500017034340360795692229, −7.66136305977935553620871325271, −6.84408103622395720166572476001, −5.37927230145379078431147508640, −4.38017131694542961067917824099, −3.00943233916172564725123748592, −1.70283889212062445135910761577,
1.20120205205903350217117931867, 2.93039322086791116043567337079, 4.21896355791915262780665387735, 5.46504239150226161536045215466, 5.90826760819537261235964196255, 7.81434456813832294521737525333, 8.331921463217972829386760945875, 9.129354858330901908687464257054, 9.969821755056149225203410711870, 11.26673415726959587203885017822