Properties

Label 12-4368e6-1.1-c1e6-0-1
Degree $12$
Conductor $6.945\times 10^{21}$
Sign $1$
Analytic cond. $1.80035\times 10^{9}$
Root an. cond. $5.90581$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 21·9-s − 2·13-s − 4·23-s + 10·25-s − 56·27-s − 4·29-s + 12·39-s + 32·43-s − 3·49-s − 36·53-s + 28·61-s + 24·69-s − 60·75-s + 32·79-s + 126·81-s + 24·87-s − 24·101-s − 32·103-s − 12·107-s + 20·113-s − 42·117-s + 22·121-s + 127-s − 192·129-s + 131-s + 137-s + ⋯
L(s)  = 1  − 3.46·3-s + 7·9-s − 0.554·13-s − 0.834·23-s + 2·25-s − 10.7·27-s − 0.742·29-s + 1.92·39-s + 4.87·43-s − 3/7·49-s − 4.94·53-s + 3.58·61-s + 2.88·69-s − 6.92·75-s + 3.60·79-s + 14·81-s + 2.57·87-s − 2.38·101-s − 3.15·103-s − 1.16·107-s + 1.88·113-s − 3.88·117-s + 2·121-s + 0.0887·127-s − 16.9·129-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{6} \cdot 7^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{6} \cdot 7^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{24} \cdot 3^{6} \cdot 7^{6} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(1.80035\times 10^{9}\)
Root analytic conductor: \(5.90581\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{24} \cdot 3^{6} \cdot 7^{6} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7840545054\)
\(L(\frac12)\) \(\approx\) \(0.7840545054\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 + T )^{6} \)
7 \( ( 1 + T^{2} )^{3} \)
13 \( 1 + 2 T + 27 T^{2} + 44 T^{3} + 27 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
good5 \( 1 - 2 p T^{2} + 23 T^{4} + 36 T^{6} + 23 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
11 \( 1 - 2 p T^{2} + 263 T^{4} - 2724 T^{6} + 263 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
17 \( ( 1 + 35 T^{2} + 16 T^{3} + 35 p T^{4} + p^{3} T^{6} )^{2} \)
19 \( 1 - 50 T^{2} + 1063 T^{4} - 16988 T^{6} + 1063 p^{2} T^{8} - 50 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 + 2 T + 49 T^{2} + 84 T^{3} + 49 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
29 \( ( 1 + 2 T + 35 T^{2} + 76 T^{3} + 35 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 - 10 T^{2} + 17 p T^{4} + 29364 T^{6} + 17 p^{3} T^{8} - 10 p^{4} T^{10} + p^{6} T^{12} \)
37 \( 1 - 174 T^{2} + 13943 T^{4} - 655652 T^{6} + 13943 p^{2} T^{8} - 174 p^{4} T^{10} + p^{6} T^{12} \)
41 \( 1 - 114 T^{2} + 4031 T^{4} - 84716 T^{6} + 4031 p^{2} T^{8} - 114 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 - 16 T + 161 T^{2} - 1248 T^{3} + 161 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 226 T^{2} + 23391 T^{4} - 1405228 T^{6} + 23391 p^{2} T^{8} - 226 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 + 6 T + p T^{2} )^{6} \)
59 \( 1 - 314 T^{2} + 42855 T^{4} - 3281564 T^{6} + 42855 p^{2} T^{8} - 314 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 - 14 T + 11 T^{2} + 684 T^{3} + 11 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 274 T^{2} + 36103 T^{4} - 2978332 T^{6} + 36103 p^{2} T^{8} - 274 p^{4} T^{10} + p^{6} T^{12} \)
71 \( 1 - 94 T^{2} + 12111 T^{4} - 940276 T^{6} + 12111 p^{2} T^{8} - 94 p^{4} T^{10} + p^{6} T^{12} \)
73 \( 1 - 166 T^{2} + 7231 T^{4} - 21268 T^{6} + 7231 p^{2} T^{8} - 166 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 16 T + 309 T^{2} - 2608 T^{3} + 309 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 90 T^{2} + 17495 T^{4} - 1240220 T^{6} + 17495 p^{2} T^{8} - 90 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 - 322 T^{2} + 50175 T^{4} - 5234188 T^{6} + 50175 p^{2} T^{8} - 322 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 - 550 T^{2} + 128975 T^{4} - 16496340 T^{6} + 128975 p^{2} T^{8} - 550 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.43636078370550383974812972733, −4.42094822753679360669339917159, −4.12223338912487838863877819826, −3.82693399667821429491334206464, −3.79688872754578418594510120229, −3.67348197838188564036176441413, −3.54184261611085290789808549306, −3.46045356425964481059433798558, −3.30430087422125522506634873751, −2.91893346953572569181758270978, −2.75339550684674185658178231113, −2.55519339048367550310426472584, −2.42637069234976860103099102607, −2.40680976541065475822602636409, −2.22604909628947878518902913316, −2.11996741736345741694370347192, −1.60017890299297787081969672195, −1.43533506043107935826415030398, −1.43382027322472992792863302116, −1.22221734115370871575007070507, −1.13098740940648607438933020389, −0.76023250447179627288217736591, −0.63429076654966409130231620591, −0.26736882370630471092962832615, −0.25813706167670251128205131677, 0.25813706167670251128205131677, 0.26736882370630471092962832615, 0.63429076654966409130231620591, 0.76023250447179627288217736591, 1.13098740940648607438933020389, 1.22221734115370871575007070507, 1.43382027322472992792863302116, 1.43533506043107935826415030398, 1.60017890299297787081969672195, 2.11996741736345741694370347192, 2.22604909628947878518902913316, 2.40680976541065475822602636409, 2.42637069234976860103099102607, 2.55519339048367550310426472584, 2.75339550684674185658178231113, 2.91893346953572569181758270978, 3.30430087422125522506634873751, 3.46045356425964481059433798558, 3.54184261611085290789808549306, 3.67348197838188564036176441413, 3.79688872754578418594510120229, 3.82693399667821429491334206464, 4.12223338912487838863877819826, 4.42094822753679360669339917159, 4.43636078370550383974812972733

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.