Properties

Label 8-4368e4-1.1-c1e4-0-0
Degree $8$
Conductor $3.640\times 10^{14}$
Sign $1$
Analytic cond. $1.47992\times 10^{6}$
Root an. cond. $5.90581$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 10·9-s − 6·13-s − 8·17-s − 10·23-s + 7·25-s + 20·27-s + 22·29-s − 24·39-s − 14·43-s − 2·49-s − 32·51-s + 6·53-s − 28·61-s − 40·69-s + 28·75-s − 10·79-s + 35·81-s + 88·87-s + 12·101-s + 40·103-s + 18·113-s − 60·117-s + 8·121-s + 127-s − 56·129-s + 131-s + ⋯
L(s)  = 1  + 2.30·3-s + 10/3·9-s − 1.66·13-s − 1.94·17-s − 2.08·23-s + 7/5·25-s + 3.84·27-s + 4.08·29-s − 3.84·39-s − 2.13·43-s − 2/7·49-s − 4.48·51-s + 0.824·53-s − 3.58·61-s − 4.81·69-s + 3.23·75-s − 1.12·79-s + 35/9·81-s + 9.43·87-s + 1.19·101-s + 3.94·103-s + 1.69·113-s − 5.54·117-s + 8/11·121-s + 0.0887·127-s − 4.93·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(1.47992\times 10^{6}\)
Root analytic conductor: \(5.90581\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(8.643609582\)
\(L(\frac12)\) \(\approx\) \(8.643609582\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{4} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
good5$C_2^3$ \( 1 - 7 T^{2} + 24 T^{4} - 7 p^{2} T^{6} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 8 T^{2} + 190 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
19$D_4\times C_2$ \( 1 - 67 T^{2} + 1840 T^{4} - 67 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 + 5 T + 14 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 - 11 T + 84 T^{2} - 11 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 115 T^{2} + 5224 T^{4} - 115 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
43$D_{4}$ \( ( 1 + 7 T + 94 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 167 T^{2} + 11284 T^{4} - 167 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 - 3 T + 104 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 40 T^{2} - 866 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
61$D_{4}$ \( ( 1 + 14 T + 154 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 72 T^{2} + 4766 T^{4} - 72 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 40 T^{2} + 4974 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 139 T^{2} + 14260 T^{4} - 139 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 5 T + 126 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 255 T^{2} + 29996 T^{4} - 255 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 279 T^{2} + 35264 T^{4} - 279 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 131 T^{2} + 9300 T^{4} - 131 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.04734015611780011267446586634, −5.83328641777180902927745812578, −5.47045775723888958076619982971, −4.90766571342073407627527751261, −4.89904964903030501289331512964, −4.88590226391969724990337670359, −4.72186530590135046632725400104, −4.67851021375844295226796764866, −4.20790226748482931271047003550, −4.05189332631339927802187754106, −4.04736062085236287314641351038, −3.60632978721397702721242191279, −3.35173413351323149639305273456, −3.16154124545013455535212115578, −2.97223905688594642133116021390, −2.82324144808772151723102958241, −2.51803697203961704069657230666, −2.35259887168245158836968647223, −2.33848754360722487248383457312, −1.82943760961141524483583867119, −1.76628662938610644915799378518, −1.36927785300550973059197725598, −1.19694384613843280105982690085, −0.50331929334794091690252944687, −0.38251575819903044128807983553, 0.38251575819903044128807983553, 0.50331929334794091690252944687, 1.19694384613843280105982690085, 1.36927785300550973059197725598, 1.76628662938610644915799378518, 1.82943760961141524483583867119, 2.33848754360722487248383457312, 2.35259887168245158836968647223, 2.51803697203961704069657230666, 2.82324144808772151723102958241, 2.97223905688594642133116021390, 3.16154124545013455535212115578, 3.35173413351323149639305273456, 3.60632978721397702721242191279, 4.04736062085236287314641351038, 4.05189332631339927802187754106, 4.20790226748482931271047003550, 4.67851021375844295226796764866, 4.72186530590135046632725400104, 4.88590226391969724990337670359, 4.89904964903030501289331512964, 4.90766571342073407627527751261, 5.47045775723888958076619982971, 5.83328641777180902927745812578, 6.04734015611780011267446586634

Graph of the $Z$-function along the critical line