L(s) = 1 | + 2-s + 2·3-s + 4-s + 2·5-s + 2·6-s + 2·7-s + 3·8-s + 3·9-s + 2·10-s − 7·11-s + 2·12-s − 4·13-s + 2·14-s + 4·15-s + 16-s − 6·17-s + 3·18-s + 2·19-s + 2·20-s + 4·21-s − 7·22-s + 9·23-s + 6·24-s + 3·25-s − 4·26-s + 4·27-s + 2·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.894·5-s + 0.816·6-s + 0.755·7-s + 1.06·8-s + 9-s + 0.632·10-s − 2.11·11-s + 0.577·12-s − 1.10·13-s + 0.534·14-s + 1.03·15-s + 1/4·16-s − 1.45·17-s + 0.707·18-s + 0.458·19-s + 0.447·20-s + 0.872·21-s − 1.49·22-s + 1.87·23-s + 1.22·24-s + 3/5·25-s − 0.784·26-s + 0.769·27-s + 0.377·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.772433380\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.772433380\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36251397374127041343089626201, −10.96417206488600490263655285433, −10.34264019006548469411454494862, −10.10904995326953672334215539315, −9.648021302574650797261891232320, −9.118052207317669976865804380000, −8.543204798214796364896863540620, −8.112249447851318817285081961621, −7.75235415881385980632209288744, −7.08278780101326358501288651886, −7.00095725827243836204529869390, −6.19888645960561360340900749760, −5.29906685322338603656687617056, −5.11028811136306908507362470100, −4.54100118367316077581297147597, −4.28680635450717115076616591496, −2.96591010180264531646197447851, −2.50140308063169562697748210635, −2.46123361879166738208870635262, −1.36360332662919032380159427521,
1.36360332662919032380159427521, 2.46123361879166738208870635262, 2.50140308063169562697748210635, 2.96591010180264531646197447851, 4.28680635450717115076616591496, 4.54100118367316077581297147597, 5.11028811136306908507362470100, 5.29906685322338603656687617056, 6.19888645960561360340900749760, 7.00095725827243836204529869390, 7.08278780101326358501288651886, 7.75235415881385980632209288744, 8.112249447851318817285081961621, 8.543204798214796364896863540620, 9.118052207317669976865804380000, 9.648021302574650797261891232320, 10.10904995326953672334215539315, 10.34264019006548469411454494862, 10.96417206488600490263655285433, 11.36251397374127041343089626201