Properties

Label 2-4320-5.4-c1-0-94
Degree $2$
Conductor $4320$
Sign $-0.447 - 0.894i$
Analytic cond. $34.4953$
Root an. cond. $5.87327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − 2i)5-s − 3·11-s − 5i·13-s i·17-s − 6·19-s − 9i·23-s + (−3 + 4i)25-s + 29-s − 3·31-s + 6i·37-s + 10·41-s + 9i·43-s + 3i·47-s + 7·49-s + 4i·53-s + ⋯
L(s)  = 1  + (−0.447 − 0.894i)5-s − 0.904·11-s − 1.38i·13-s − 0.242i·17-s − 1.37·19-s − 1.87i·23-s + (−0.600 + 0.800i)25-s + 0.185·29-s − 0.538·31-s + 0.986i·37-s + 1.56·41-s + 1.37i·43-s + 0.437i·47-s + 49-s + 0.549i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4320\)    =    \(2^{5} \cdot 3^{3} \cdot 5\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(34.4953\)
Root analytic conductor: \(5.87327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4320} (1729, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 4320,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1 + 2i)T \)
good7 \( 1 - 7T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 + 5iT - 13T^{2} \)
17 \( 1 + iT - 17T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
23 \( 1 + 9iT - 23T^{2} \)
29 \( 1 - T + 29T^{2} \)
31 \( 1 + 3T + 31T^{2} \)
37 \( 1 - 6iT - 37T^{2} \)
41 \( 1 - 10T + 41T^{2} \)
43 \( 1 - 9iT - 43T^{2} \)
47 \( 1 - 3iT - 47T^{2} \)
53 \( 1 - 4iT - 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 + 8T + 61T^{2} \)
67 \( 1 - 12iT - 67T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + 2iT - 73T^{2} \)
79 \( 1 - 9T + 79T^{2} \)
83 \( 1 + 12iT - 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.004273851844292328934312814288, −7.39462507204383834711528946443, −6.26386417076812809265381507056, −5.68352779358598727389890020794, −4.68868703272931563452990976850, −4.38706513160056980566551081999, −3.11439438803123958940884370455, −2.39483813375047245275032599233, −0.973999443062880107012682626265, 0, 1.84417271437197806202096183312, 2.52818277803571159480371174162, 3.68281938755459980697431255584, 4.13379644009758040713330215748, 5.20930388047662605508862598711, 6.04647686921345974675507844558, 6.74392564294349125400154323280, 7.46591261321200709405576274905, 7.926173921401790536647631764066

Graph of the $Z$-function along the critical line