Properties

Label 4-432e2-1.1-c3e2-0-11
Degree $4$
Conductor $186624$
Sign $1$
Analytic cond. $649.680$
Root an. cond. $5.04864$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s − 24·7-s − 2·11-s + 32·13-s − 56·17-s − 184·19-s − 92·23-s + 95·25-s − 336·29-s − 376·31-s − 192·35-s + 348·37-s − 312·41-s − 80·43-s + 228·47-s + 43·49-s + 152·53-s − 16·55-s − 680·59-s − 112·61-s + 256·65-s − 352·67-s − 1.81e3·71-s − 574·73-s + 48·77-s + 1.36e3·79-s + 782·83-s + ⋯
L(s)  = 1  + 0.715·5-s − 1.29·7-s − 0.0548·11-s + 0.682·13-s − 0.798·17-s − 2.22·19-s − 0.834·23-s + 0.759·25-s − 2.15·29-s − 2.17·31-s − 0.927·35-s + 1.54·37-s − 1.18·41-s − 0.283·43-s + 0.707·47-s + 0.125·49-s + 0.393·53-s − 0.0392·55-s − 1.50·59-s − 0.235·61-s + 0.488·65-s − 0.641·67-s − 3.03·71-s − 0.920·73-s + 0.0710·77-s + 1.93·79-s + 1.03·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186624 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(186624\)    =    \(2^{8} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(649.680\)
Root analytic conductor: \(5.04864\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 186624,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( 1 - 8 T - 31 T^{2} - 8 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 24 T + 533 T^{2} + 24 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + T + p^{3} T^{2} )^{2} \)
13$D_{4}$ \( 1 - 32 T - 102 T^{2} - 32 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 56 T + 5858 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 184 T + 20994 T^{2} + 184 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 4 p T + 21698 T^{2} + 4 p^{4} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 336 T + 75814 T^{2} + 336 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 376 T + 87501 T^{2} + 376 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 348 T + 126830 T^{2} - 348 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 312 T + 132478 T^{2} + 312 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 80 T + 102402 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 228 T + 201634 T^{2} - 228 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 152 T + 253337 T^{2} - 152 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 680 T + 355286 T^{2} + 680 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 112 T + 152970 T^{2} + 112 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 352 T + 289170 T^{2} + 352 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 1816 T + 1497518 T^{2} + 1816 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2$ \( ( 1 + 287 T + p^{3} T^{2} )^{2} \)
79$D_{4}$ \( 1 - 1360 T + 1144350 T^{2} - 1360 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 782 T + 992327 T^{2} - 782 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 240 T + 1328110 T^{2} - 240 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 338 T + 1834899 T^{2} + 338 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.52696744736408198114395906462, −10.20597920808295143673816715844, −9.303142653445292249586966521270, −9.238631402539557408856548604024, −9.014342492287233990490816556682, −8.257266658223268306481138337542, −7.76142743545064855890280081430, −7.15163785689839269734082393389, −6.53391159932758735566017410751, −6.37544415955527091454810870088, −5.76783045070097906409492919766, −5.49668942291155954036542691684, −4.46958967775747929808685138474, −4.07542762469371378497864144259, −3.50737905969504531858237629222, −2.80335647271285966113030172361, −2.02835249262768962554640506789, −1.62489058401124482388708608258, 0, 0, 1.62489058401124482388708608258, 2.02835249262768962554640506789, 2.80335647271285966113030172361, 3.50737905969504531858237629222, 4.07542762469371378497864144259, 4.46958967775747929808685138474, 5.49668942291155954036542691684, 5.76783045070097906409492919766, 6.37544415955527091454810870088, 6.53391159932758735566017410751, 7.15163785689839269734082393389, 7.76142743545064855890280081430, 8.257266658223268306481138337542, 9.014342492287233990490816556682, 9.238631402539557408856548604024, 9.303142653445292249586966521270, 10.20597920808295143673816715844, 10.52696744736408198114395906462

Graph of the $Z$-function along the critical line