Properties

Label 2-432-27.2-c2-0-23
Degree $2$
Conductor $432$
Sign $-0.771 + 0.636i$
Analytic cond. $11.7711$
Root an. cond. $3.43091$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.88 − 0.812i)3-s + (0.980 + 1.16i)5-s + (−3.23 + 1.17i)7-s + (7.67 + 4.69i)9-s + (3.21 − 3.82i)11-s + (−0.778 − 4.41i)13-s + (−1.88 − 4.17i)15-s + (−3.57 + 2.06i)17-s + (−6.75 + 11.7i)19-s + (10.3 − 0.772i)21-s + (5.79 − 15.9i)23-s + (3.93 − 22.3i)25-s + (−18.3 − 19.7i)27-s + (−47.1 − 8.30i)29-s + (14.3 + 5.22i)31-s + ⋯
L(s)  = 1  + (−0.962 − 0.270i)3-s + (0.196 + 0.233i)5-s + (−0.462 + 0.168i)7-s + (0.853 + 0.521i)9-s + (0.291 − 0.347i)11-s + (−0.0599 − 0.339i)13-s + (−0.125 − 0.278i)15-s + (−0.210 + 0.121i)17-s + (−0.355 + 0.615i)19-s + (0.491 − 0.0367i)21-s + (0.252 − 0.692i)23-s + (0.157 − 0.893i)25-s + (−0.680 − 0.733i)27-s + (−1.62 − 0.286i)29-s + (0.462 + 0.168i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.771 + 0.636i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.771 + 0.636i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $-0.771 + 0.636i$
Analytic conductor: \(11.7711\)
Root analytic conductor: \(3.43091\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (353, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :1),\ -0.771 + 0.636i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.154534 - 0.430194i\)
\(L(\frac12)\) \(\approx\) \(0.154534 - 0.430194i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (2.88 + 0.812i)T \)
good5 \( 1 + (-0.980 - 1.16i)T + (-4.34 + 24.6i)T^{2} \)
7 \( 1 + (3.23 - 1.17i)T + (37.5 - 31.4i)T^{2} \)
11 \( 1 + (-3.21 + 3.82i)T + (-21.0 - 119. i)T^{2} \)
13 \( 1 + (0.778 + 4.41i)T + (-158. + 57.8i)T^{2} \)
17 \( 1 + (3.57 - 2.06i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (6.75 - 11.7i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (-5.79 + 15.9i)T + (-405. - 340. i)T^{2} \)
29 \( 1 + (47.1 + 8.30i)T + (790. + 287. i)T^{2} \)
31 \( 1 + (-14.3 - 5.22i)T + (736. + 617. i)T^{2} \)
37 \( 1 + (32.3 + 56.0i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (55.4 - 9.76i)T + (1.57e3 - 574. i)T^{2} \)
43 \( 1 + (22.7 + 19.0i)T + (321. + 1.82e3i)T^{2} \)
47 \( 1 + (-7.04 - 19.3i)T + (-1.69e3 + 1.41e3i)T^{2} \)
53 \( 1 + 19.8iT - 2.80e3T^{2} \)
59 \( 1 + (63.6 + 75.9i)T + (-604. + 3.42e3i)T^{2} \)
61 \( 1 + (-77.5 + 28.2i)T + (2.85e3 - 2.39e3i)T^{2} \)
67 \( 1 + (11.2 + 63.7i)T + (-4.21e3 + 1.53e3i)T^{2} \)
71 \( 1 + (109. - 63.3i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-18.0 + 31.2i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-14.4 + 82.1i)T + (-5.86e3 - 2.13e3i)T^{2} \)
83 \( 1 + (-16.5 - 2.91i)T + (6.47e3 + 2.35e3i)T^{2} \)
89 \( 1 + (-66.0 - 38.1i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (-82.1 - 68.9i)T + (1.63e3 + 9.26e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.62728536586074896211296554402, −9.943956426002443991763516238438, −8.795356833518774439220273803437, −7.66515449471019497410438693647, −6.58454212939525496912698645449, −6.00278431578741597101704108167, −4.92313041554689468863383620126, −3.60277666757519593770932823415, −1.97542562801495988530267306563, −0.21906511523938113592975509276, 1.53159162435285573653329008842, 3.47239617335918124331707517778, 4.64870364384607527138280495225, 5.51872366827909100109705165589, 6.63518362832004492869921006342, 7.26445022224196131411858677152, 8.836076834146300136666991686666, 9.612061246332474537430862784587, 10.37406340119457656052132779651, 11.39627081273770164310203156122

Graph of the $Z$-function along the critical line