Properties

Label 2-432-27.16-c1-0-5
Degree $2$
Conductor $432$
Sign $0.329 - 0.944i$
Analytic cond. $3.44953$
Root an. cond. $1.85729$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.986 + 1.42i)3-s + (2.52 + 0.917i)5-s + (−0.168 + 0.957i)7-s + (−1.05 + 2.80i)9-s + (−0.297 + 0.108i)11-s + (−1.15 + 0.973i)13-s + (1.17 + 4.49i)15-s + (−0.587 − 1.01i)17-s + (3.11 − 5.38i)19-s + (−1.52 + 0.703i)21-s + (−0.375 − 2.12i)23-s + (1.68 + 1.41i)25-s + (−5.03 + 1.26i)27-s + (−3.37 − 2.83i)29-s + (1.50 + 8.54i)31-s + ⋯
L(s)  = 1  + (0.569 + 0.822i)3-s + (1.12 + 0.410i)5-s + (−0.0638 + 0.361i)7-s + (−0.351 + 0.936i)9-s + (−0.0897 + 0.0326i)11-s + (−0.321 + 0.269i)13-s + (0.304 + 1.16i)15-s + (−0.142 − 0.246i)17-s + (0.713 − 1.23i)19-s + (−0.333 + 0.153i)21-s + (−0.0783 − 0.444i)23-s + (0.336 + 0.282i)25-s + (−0.969 + 0.243i)27-s + (−0.626 − 0.525i)29-s + (0.270 + 1.53i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.329 - 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.329 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $0.329 - 0.944i$
Analytic conductor: \(3.44953\)
Root analytic conductor: \(1.85729\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :1/2),\ 0.329 - 0.944i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.54795 + 1.09975i\)
\(L(\frac12)\) \(\approx\) \(1.54795 + 1.09975i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.986 - 1.42i)T \)
good5 \( 1 + (-2.52 - 0.917i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (0.168 - 0.957i)T + (-6.57 - 2.39i)T^{2} \)
11 \( 1 + (0.297 - 0.108i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (1.15 - 0.973i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (0.587 + 1.01i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-3.11 + 5.38i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.375 + 2.12i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (3.37 + 2.83i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-1.50 - 8.54i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (-2.23 - 3.86i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-4.47 + 3.75i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (-5.25 + 1.91i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-0.429 + 2.43i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 10.8T + 53T^{2} \)
59 \( 1 + (1.62 + 0.589i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-0.176 + 0.999i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (0.656 - 0.550i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (4.79 + 8.31i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-7.62 + 13.1i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-8.59 - 7.20i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (3.58 + 3.01i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-7.74 + 13.4i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-5.21 + 1.89i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02995419245968645396979397720, −10.33244087622311890149239821059, −9.397827437323368939114690487869, −9.040623699051757969953974029663, −7.73116643662798947034771754452, −6.58666683700064406288271388285, −5.48571681383217704497362709515, −4.59757723898915066802903903236, −3.06886955640931298277789236553, −2.20279525681424345109437818477, 1.30592209775080635955812140695, 2.47671162099533558754071985177, 3.87846408354110806073806410102, 5.52235370082492066549076342038, 6.17699041013390527710192381507, 7.43307715701964364881289367338, 8.089630999690942501294052652937, 9.372149984504191488360569182919, 9.709860295136885666006968590309, 10.96266331350135073248605747628

Graph of the $Z$-function along the critical line