Properties

Label 8-432e4-1.1-c1e4-0-0
Degree $8$
Conductor $34828517376$
Sign $1$
Analytic cond. $141.593$
Root an. cond. $1.85729$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 20·13-s + 12·16-s − 8·19-s − 4·31-s + 16·37-s + 4·43-s + 10·49-s + 80·52-s − 8·61-s − 32·64-s − 20·67-s + 32·76-s + 56·79-s + 20·97-s − 32·109-s + 16·124-s + 127-s + 131-s + 137-s + 139-s − 64·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 2·4-s − 5.54·13-s + 3·16-s − 1.83·19-s − 0.718·31-s + 2.63·37-s + 0.609·43-s + 10/7·49-s + 11.0·52-s − 1.02·61-s − 4·64-s − 2.44·67-s + 3.67·76-s + 6.30·79-s + 2.03·97-s − 3.06·109-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.26·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(141.593\)
Root analytic conductor: \(1.85729\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3474305567\)
\(L(\frac12)\) \(\approx\) \(0.3474305567\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3 \( 1 \)
good5$C_2^3$ \( 1 + 31 T^{4} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 199 T^{4} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^3$ \( 1 - 1646 T^{4} + p^{4} T^{8} \)
31$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 - 5393 T^{4} + p^{4} T^{8} \)
59$C_2^3$ \( 1 - 6638 T^{4} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 137 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
83$C_2^3$ \( 1 - 89 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 64 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.038518637428708863930756060572, −7.74298213393965585962182826168, −7.73842040573584713080577347079, −7.44723686624247340613608639382, −7.30927063210255384551126033903, −6.94367720843916167097916232154, −6.50356323943057660843832123400, −6.34585791945191617557791159134, −6.12624928219564939784020638227, −5.55988523313041032286622566118, −5.32756047011352069384440388161, −5.28219412154020868924249274055, −4.96476869240275290623446340715, −4.58124967098889192171986960913, −4.48897787248475370359130872160, −4.24395745802211909659566580048, −4.23884246784672676153777627001, −3.51804922440365647904792062450, −3.20839331520026772562491140943, −2.78527710980162340662330233998, −2.37717359825202617195487732572, −2.27985285564345268321863126614, −1.89194285751952004614765969622, −0.74746319509705047448031245802, −0.31730427996072659293550374712, 0.31730427996072659293550374712, 0.74746319509705047448031245802, 1.89194285751952004614765969622, 2.27985285564345268321863126614, 2.37717359825202617195487732572, 2.78527710980162340662330233998, 3.20839331520026772562491140943, 3.51804922440365647904792062450, 4.23884246784672676153777627001, 4.24395745802211909659566580048, 4.48897787248475370359130872160, 4.58124967098889192171986960913, 4.96476869240275290623446340715, 5.28219412154020868924249274055, 5.32756047011352069384440388161, 5.55988523313041032286622566118, 6.12624928219564939784020638227, 6.34585791945191617557791159134, 6.50356323943057660843832123400, 6.94367720843916167097916232154, 7.30927063210255384551126033903, 7.44723686624247340613608639382, 7.73842040573584713080577347079, 7.74298213393965585962182826168, 8.038518637428708863930756060572

Graph of the $Z$-function along the critical line