Properties

Label 2-432-108.83-c1-0-2
Degree $2$
Conductor $432$
Sign $0.0989 - 0.995i$
Analytic cond. $3.44953$
Root an. cond. $1.85729$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.63 + 0.570i)3-s + (2.34 + 2.79i)5-s + (−0.550 − 1.51i)7-s + (2.34 − 1.86i)9-s + (2.21 + 1.85i)11-s + (0.121 + 0.690i)13-s + (−5.43 − 3.23i)15-s + (−5.56 + 3.21i)17-s + (1.62 + 0.938i)19-s + (1.76 + 2.16i)21-s + (2.18 + 0.794i)23-s + (−1.44 + 8.20i)25-s + (−2.78 + 4.38i)27-s + (5.54 + 0.978i)29-s + (−3.63 + 9.99i)31-s + ⋯
L(s)  = 1  + (−0.944 + 0.329i)3-s + (1.04 + 1.25i)5-s + (−0.208 − 0.571i)7-s + (0.783 − 0.621i)9-s + (0.667 + 0.560i)11-s + (0.0337 + 0.191i)13-s + (−1.40 − 0.835i)15-s + (−1.34 + 0.778i)17-s + (0.373 + 0.215i)19-s + (0.384 + 0.471i)21-s + (0.455 + 0.165i)23-s + (−0.289 + 1.64i)25-s + (−0.535 + 0.844i)27-s + (1.03 + 0.181i)29-s + (−0.653 + 1.79i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0989 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0989 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $0.0989 - 0.995i$
Analytic conductor: \(3.44953\)
Root analytic conductor: \(1.85729\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :1/2),\ 0.0989 - 0.995i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.861033 + 0.779649i\)
\(L(\frac12)\) \(\approx\) \(0.861033 + 0.779649i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.63 - 0.570i)T \)
good5 \( 1 + (-2.34 - 2.79i)T + (-0.868 + 4.92i)T^{2} \)
7 \( 1 + (0.550 + 1.51i)T + (-5.36 + 4.49i)T^{2} \)
11 \( 1 + (-2.21 - 1.85i)T + (1.91 + 10.8i)T^{2} \)
13 \( 1 + (-0.121 - 0.690i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (5.56 - 3.21i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.62 - 0.938i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-2.18 - 0.794i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (-5.54 - 0.978i)T + (27.2 + 9.91i)T^{2} \)
31 \( 1 + (3.63 - 9.99i)T + (-23.7 - 19.9i)T^{2} \)
37 \( 1 + (4.10 + 7.10i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-6.18 + 1.09i)T + (38.5 - 14.0i)T^{2} \)
43 \( 1 + (5.65 - 6.74i)T + (-7.46 - 42.3i)T^{2} \)
47 \( 1 + (-1.67 + 0.609i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 - 0.849iT - 53T^{2} \)
59 \( 1 + (-4.54 + 3.81i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (9.95 - 3.62i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (-14.5 + 2.56i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (5.80 + 10.0i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-3.12 + 5.40i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (4.47 + 0.789i)T + (74.2 + 27.0i)T^{2} \)
83 \( 1 + (-1.28 + 7.27i)T + (-77.9 - 28.3i)T^{2} \)
89 \( 1 + (6.02 + 3.47i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-1.35 - 1.13i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.95995242554647086589994889822, −10.63775155676828531940889355726, −9.827001518492090674828891920977, −8.985405276207476728227539231479, −7.07588680868242080387619971569, −6.73166969992818825353567113269, −5.87098260223799384554263386891, −4.62063323313773430546659125798, −3.42784780319916588922620744105, −1.76048445685678200230336015729, 0.881393822718836342686337237697, 2.30321529220675677411570807235, 4.43313951555480935692093582121, 5.32946996748529726872482937687, 6.04655947592232276010292805137, 6.92300628859740006438509046613, 8.427792394854468840769602168600, 9.186224171936924476620232320352, 9.915308772567503154733211457023, 11.14923578562743454476279843920

Graph of the $Z$-function along the critical line